login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303668
Expansion of 1/((1 - x)*(2 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function.
4
1, 2, 3, 5, 8, 12, 19, 30, 46, 71, 111, 172, 266, 413, 640, 991, 1537, 2383, 3692, 5722, 8869, 13745, 21303, 33018, 51172, 79308, 122917, 190503, 295251, 457597, 709207, 1099165, 1703546, 2640245, 4091988, 6341979, 9829132, 15233702, 23609994, 36592010, 56712212, 87895562
OFFSET
0,2
COMMENTS
Partial sums of A023361.
FORMULA
G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k*(k+1)/2))).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(`if`(issqr(8*j+1), b(n-j), 0), j=1..n))
end:
a:= proc(n) option remember;
`if`(n<0, 0, b(n)+a(n-1))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Apr 28 2018
MATHEMATICA
nmax = 41; CoefficientList[Series[1/((1 - x) (2 - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)))), {x, 0, nmax}], x]
nmax = 41; CoefficientList[Series[1/((1 - x) (1 - Sum[x^(k (k + 1)/2), {k, 1, nmax}])), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[SquaresR[1, 8 k + 1] a[n - k], {k, 1, n}]/2; Accumulate[Table[a[n], {n, 0, 41}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 28 2018
STATUS
approved