login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303670 Decimal expansion of Product_{k>=1} Gamma(1 + 1/k^2). 4
7, 3, 3, 0, 2, 4, 9, 4, 3, 3, 8, 5, 8, 3, 0, 1, 6, 9, 1, 0, 9, 4, 5, 9, 9, 2, 8, 8, 4, 7, 8, 0, 9, 9, 3, 4, 9, 8, 4, 5, 3, 3, 8, 3, 5, 0, 5, 0, 0, 1, 0, 2, 2, 1, 9, 8, 2, 2, 3, 0, 0, 5, 9, 6, 1, 7, 2, 4, 1, 6, 2, 7, 2, 0, 2, 0, 5, 9, 0, 9, 6, 0, 2, 2, 2, 1, 5, 2, 0, 0, 3, 9, 5, 6, 8, 9, 2, 2, 9, 2, 7, 2, 6, 1, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
FORMULA
Equals Product_{k>=1} Gamma(1/k^2) / k^2.
Equals exp(-gamma*Pi^2/6 + Sum_{k>=2} (-1)^k*zeta(k)*zeta(2*k)/k), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 09 2019
Equals exp(-gamma*Pi^2/6 + A306774).
EXAMPLE
0.73302494338583016910945992884780993498453383505001022198223...
MAPLE
Digits := 120: evalf(product(GAMMA(1+1/n^2), n = 1..infinity));
evalf(exp(-gamma*Pi^2/6 + Sum((-1)^k*Zeta(k)*Zeta(2*k)/k, k=2..infinity)), 121); # Vaclav Kotesovec, Mar 09 2019
MATHEMATICA
RealDigits[NProduct[Gamma[1 + 1/n^2], {n, 1, Infinity}, WorkingPrecision -> 120, NProductFactors -> 1000], 10, 70][[1]]
PROG
(PARI) exp(-Euler*Pi^2/6 + sumalt(k=2, (-1)^k*zeta(k)*zeta(2*k)/k)) \\ Vaclav Kotesovec, Mar 09 2019
CROSSREFS
Sequence in context: A245532 A324714 A075564 * A135041 A021581 A265411
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Apr 28 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 09:29 EST 2023. Contains 367589 sequences. (Running on oeis4.)