This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306769 Decimal expansion of Sum_{k>=2} (-1)^k * Zeta(k)^2 / k. 5
 1, 0, 4, 3, 4, 0, 2, 9, 1, 7, 5, 7, 4, 2, 8, 8, 7, 3, 3, 2, 5, 5, 2, 8, 9, 6, 4, 6, 6, 7, 1, 6, 7, 6, 0, 3, 0, 5, 4, 8, 4, 7, 0, 8, 6, 6, 0, 4, 6, 8, 8, 2, 5, 6, 1, 0, 4, 4, 5, 7, 0, 4, 7, 9, 7, 6, 9, 5, 8, 5, 0, 6, 2, 5, 5, 2, 5, 2, 4, 8, 4, 3, 2, 7, 6, 1, 5, 1, 0, 7, 2, 0, 7, 9, 8, 4, 1, 4, 3, 5, 6, 2, 1, 4, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Sum_{k>=2} (-1)^k*Zeta(k)/k = A001620 (see MathWorld, formula 122). LINKS Eric Weisstein's MathWorld, Riemann Zeta Function Wikipedia, Riemann Zeta Function FORMULA Equals log(A306765) + A001620^2. EXAMPLE 1.043402917574288733255289646671676030548470866046882561044570479769585... MAPLE evalf(Sum((-1)^j*Zeta(j)^2/j, j=2..infinity), 100); MATHEMATICA NSum[(-1)^k*Zeta[k]^2/k, {k, 2, Infinity}, WorkingPrecision -> 200, NSumTerms -> 100000] PROG (PARI) sumalt(k=2, (-1)^k*zeta(k)^2/k) \\ Michel Marcus, Mar 09 2019 CROSSREFS Cf. A231132, A306760, A306765, A306774, A306778, A307106. Sequence in context: A007568 A091884 A255257 * A243149 A048156 A070431 Adjacent sequences:  A306766 A306767 A306768 * A306770 A306771 A306772 KEYWORD nonn,cons AUTHOR Vaclav Kotesovec, Mar 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 08:15 EDT 2019. Contains 328051 sequences. (Running on oeis4.)