login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306760
a(n) = Product_{i=1..n, j=1..n} (i*j + 1).
9
1, 2, 90, 705600, 4105057320000, 52487876090562232320000, 3487017405172854771910634342400000000, 2448893405298238642974553493547144534294528000000000000, 33257039167768610289435138215602132823918399655132218973388800000000000000000
OFFSET
0,2
FORMULA
a(n) ~ c * n^(n*(2*n+1) + 2*gamma) * (2*Pi)^n * exp(1/6 + log(n)^2 - 2*n^2), where c = 1/A306765 and gamma is the Euler-Mascheroni constant A001620.
MAPLE
a:= n-> mul(mul(i*j+1, i=1..n), j=1..n):
seq(a(n), n=0..9); # Alois P. Heinz, Jun 24 2023
MATHEMATICA
Table[Product[i*j + 1, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
Table[n!^(2*n) * Product[Binomial[n + 1/j, n], {j, 1, n}], {n, 1, 10}]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 08 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
STATUS
approved