login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306765
Decimal expansion of lim_{k->oo} (k^A001620 / k!) * Product_{j=1..k} Gamma(1/j).
3
2, 0, 3, 4, 4, 4, 8, 9, 4, 5, 4, 8, 7, 6, 1, 6, 4, 7, 7, 9, 8, 0, 3, 5, 5, 5, 3, 1, 8, 8, 6, 9, 0, 2, 6, 3, 5, 5, 9, 7, 9, 4, 3, 9, 8, 6, 3, 7, 0, 2, 3, 7, 6, 2, 6, 0, 0, 0, 5, 2, 8, 4, 1, 6, 5, 6, 5, 0, 0, 7, 8, 2, 7, 7, 5, 7, 1, 1, 3, 2, 4, 4, 5, 0, 2, 6, 5, 0, 4, 0, 6, 1, 3, 5, 0, 7, 5, 0, 2, 9, 1, 2, 7, 1, 4
OFFSET
1,1
LINKS
FORMULA
Equals exp(-gamma^2 + Sum_{j>=2} (-1)^j*Zeta(j)^2/j), where gamma is the Euler-Mascheroni constant A001620.
Equals exp(-gamma^2 + A306769).
Equals lim_{k->oo} k^(k*(2*k+1) + 2*gamma) * (2*Pi)^k * exp(1/6 + log(k)^2 - 2*k^2) / A306760(k).
EXAMPLE
2.0344489454876164779803555318869026355979439863702376260005284165650078277571...
MAPLE
evalf(exp(-gamma^2 + Sum((-1)^j*Zeta(j)^2/j, j=2..infinity)), 100);
MATHEMATICA
slogam = Table[Sum[LogGamma[1/j], {j, 1, n}], {n, 1, 1000}]; $MaxExtraPrecision = 1000; funs[n_] := E^slogam[[n]] * n^EulerGamma/n!; Do[Print[N[Sum[(-1)^(m + j) * funs[j*Floor[Length[slogam]/m]] * (j^(m - 1)/(j - 1)!/(m - j)!), {j, 1, m}], 80]], {m, 10, 100, 10}]
PROG
(PARI) exp(-Euler^2 + sumalt(j=2, (-1)^j*zeta(j)^2/j))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Mar 08 2019
STATUS
approved