login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A306762
Smallest integer k such that Sum_(i=1..k) lambda(i) is divisible by n, where lambda(i) is the Carmichael lambda function.
0
1, 2, 4, 3, 5, 4, 12, 11, 7, 5, 49, 6, 9, 12, 10, 15, 16, 7, 24, 8, 12, 49, 26, 30, 23, 9, 13, 17, 55, 10, 58, 15, 71, 16, 44, 19, 169, 24, 100, 11, 48, 12, 25, 49, 18, 26, 38, 30, 40, 23, 164, 28, 50, 13, 141, 20, 47, 55, 21, 14, 80, 58, 192, 15, 110, 71, 76
OFFSET
1,2
EXAMPLE
a(7) = 12 because Sum_{i=1..12} lambda(i) = 1 + 1 + 2 + 2 + 4 + 2 + 6 + 2 + 6 + 4 + 10 + 2 = 42, and 42/7 = 6.
MAPLE
S:= ListTools:-PartialSums(map(numtheory:-lambda, [$1..500])):
N:= 100: count:= 0: V:= Vector(N):
for n from 1 to 500 while count < N do
d:= select(t -> t <= N and V[t] = 0, numtheory:-divisors(S[n]));
count:= count + nops(d);
V[convert(d, list)]:= n;
od:
convert(V, list); # Robert Israel, Mar 11 2019
MATHEMATICA
a[n_] := (m = 1; While[! IntegerQ[Sum[CarmichaelLambda[k], {k, 1, m}]/n], m++]; m); a /@ Range[80]
PROG
(PARI) lambda(n) = lcm(znstar(n)[2]);
a(n) = {my(k=1, s=lambda(k)); while (s % n, k++; s += lambda(k)); k; } \\ Michel Marcus, Mar 09 2019
CROSSREFS
Cf. A002322 (Carmichael lambda), A162578 (partial sums of A002322).
Cf. A053049 (analog with totient function).
Sequence in context: A328793 A195782 A053049 * A124938 A198342 A081725
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Mar 08 2019
STATUS
approved