login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306764
a(n) is a sequence of period 12: repeat [1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6].
0
1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6
OFFSET
0,3
COMMENTS
a(1) to a(12) is a palindrome.
A089145(n) = A089128(n+3).
A089128(n) = A089145(n+3).
a(1) + a(2) + a(3) + a(4) = a(5) + a(6) + a(7) + a(8) = a(9) + a(10) + a(11) + a(12) = 10.
FORMULA
a(n) = 2*A064038(n+3)/A306368(n).
a(n) = interleave A089128(n-1), A089128(n+1).
a(n) = interleave A089145(n+2), A089145(n-2).
From Colin Barker, Dec 09 2019: (Start)
G.f.: (1 + x + 6*x^2 + x^3 - 3*x^5 + x^6 + 2*x^7 + 6*x^8) / ((1 - x)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4)).
a(n) = a(n-3) - a(n-6) + a(n-9) for n>8.
(End)
EXAMPLE
a(0) = 6/6 = 1;
a(1) = 10/10 = 1;
a(2) = 30/5 = 6;
a(3) = 42/21 = 2.
MATHEMATICA
PadRight[{}, 120, {1, 1, 6, 2, 1, 3, 2, 2, 3, 1, 2, 6}] (* or *) LinearRecurrence[ {0, 0, 1, 0, 0, -1, 0, 0, 1}, {1, 1, 6, 2, 1, 3, 2, 2, 3}, 120] (* Harvey P. Dale, Dec 16 2021 *)
PROG
(PARI) Vec((1 + x + 6*x^2 + x^3 - 3*x^5 + x^6 + 2*x^7 + 6*x^8) / ((1 - x)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4)) + O(x^80)) \\ Colin Barker, Dec 11 2019
CROSSREFS
Cf. A064038, A089128 and A089145 (shifted bisections), A306368, A010692.
Sequence in context: A284761 A021165 A165061 * A101607 A039508 A324569
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Mar 08 2019
STATUS
approved