login
A284761
a(n) = gcd(A279513(n), A279513(n+1)).
3
1, 1, 1, 1, 1, 1, 1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 3
OFFSET
1,8
COMMENTS
Two consecutive numbers, say n and n+1, cannot share a prime factor (gcd(n, n+1)=1). However, their prime tower factorizations can share some prime numbers; this is the case iff a(n)>1 (see A182318 for the definition of the prime tower factorization of a number).
If p is prime, then a(p-1) = a(p) = 1.
If p is an odd prime, then a(p^2) = 2.
This sequence contains a multiple of p for any prime p:
- let m = A074792(p)^p-1,
- m is a multiple of p, hence p divides A279513(m),
- m+1 = A074792(p)^p, hence p divides A279513(m+1),
- hence p divides gcd(A279513(m), A279513(m+1)) = a(m).
This sequence contains infinitely many distinct values; see A284821 for these distinct values in order of appearance, and A284822 for the corresponding indexes.
EXAMPLE
a(8) = gcd(A279513(8), A279513(9)) = gcd(A279513(2^3), A279513(3^2)) = gcd(2*3, 3*2) = 6.
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Apr 02 2017
STATUS
approved