login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182318
List of positive integers whose prime tower factorization, as defined in comments, does not contain the prime 2.
32
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 149
OFFSET
1,2
COMMENTS
The prime tower factorization of a number can be recursively defined as follows: the prime tower factorization of 1 is itself; to find the prime tower factorization of an integer n > 1, let n = p_1^e_1 * p_2^e_2 * ... * p_k^e_k be the canonical prime factorization of n, then the prime tower factorization is given by p_1^f_1 * p_2^f_2 * ... * p_k^f_k, where f_i is the prime tower factorization of e_i.
An alternative definition: let I(n) be the indicator function for the set of positive integers whose prime tower factorization does not contain a 2. Then I(n) is the multiplicative function satisfying I(p^k) = I(k) for p prime not equal to 2, and I(2^k) = 0.
LINKS
Patrick Devlin and Edinah Gnang, Primes Appearing in Prime Tower Factorization, arXiv:1204.5251 [math.NT], 2012-2014.
MAPLE
# The integer n is in this sequence if and only if
# containsPrimeInTower(2, n) returns false
containsPrimeInTower:=proc(q, n) local i, L, currentExponent; option remember;
if n <= 1 then return false: end if;
if type(n/q, integer) then return true: end if;
L := ifactors(n)[2];
for i to nops(L) do currentExponent := L[i][2];
if containsPrimeInTower(q, currentExponent) then return true: end if
end do;
return false:
end proc:
MATHEMATICA
Select[Range[150], ! MemberQ[Flatten@ FixedPoint[Map[If[PrimeQ@ Last@ # || Last@ # == 1, #, {First@ #, FactorInteger@ Last@ #}] &, #, {Depth@ # - 2}] &, FactorInteger@ #], 2] &] (* Michael De Vlieger, Feb 17 2017 *)
containsPrimeInTower[q_, n_] := containsPrimeInTower[q, n] = Module[{i, L, currentExponent}, If[n <= 1, Return[False]]; If[IntegerQ[n/q], Return[True] ]; L = FactorInteger[n]; For[i = 1, i <= Length[L], i++, currentExponent = L[[i, 2]]; If[containsPrimeInTower[q, currentExponent], Return[True]]]; Return[False]];
Select[Range[150], !containsPrimeInTower[2, #]&] (* Jean-François Alcover, Jan 22 2019, translated from Maple *)
PROG
(PARI) is(n)=if(n<4, return(n!=2)); if(n%2==0, return(0)); my(f=factor(n)[, 2]); for(i=1, #f, if(!is(f[i]), return(0))); 1 \\ Charles R Greathouse IV, May 16 2024
CROSSREFS
A276378 is a subsequence.
Sequence in context: A088828 A348741 A348748 * A376218 A247424 A305635
KEYWORD
nonn
AUTHOR
Patrick Devlin, Apr 24 2012
EXTENSIONS
Typo in Maple program corrected by Rémy Sigrist, Dec 13 2016
STATUS
approved