login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088828
Nonsquare positive odd numbers.
13
3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 125, 127, 129, 131, 133, 135, 137, 139
OFFSET
1,1
COMMENTS
Odd numbers with even abundance: primes and some composites too.
Odd numbers with odd abundance are in A016754. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829.
Or, odd numbers without the squares. - Gerald Hillier, Apr 12 2009
LINKS
FORMULA
a(n) = 2*n + s - ((s+1) mod 2) where s = round(sqrt(2*n-1)). - Gerald Hillier, Apr 15 2009
A005408 SETMINUS A016754. - R. J. Mathar, Jun 16 2018
a(n) = 2*(n+h) + 1 where h = floor((1/4)*(sqrt(8*n) - 1)) is the largest value such that A014105(h) < n. - John Tyler Rascoe, Jul 05 2022
EXAMPLE
n = p prime, abundance = 1 - p = even and negative;
n = 21, sigma = 1 + 3 + 7 + 21 = 32, abundance = 32 - 42 = -20.
MATHEMATICA
Do[s=DivisorSigma[1, n]-2*n; If[ !OddQ[s]&&OddQ[n], Print[{n, s}]], {n, 1, 1000}]
Select[Range[1, 500, 2], EvenQ[DivisorSigma[1, #] - 2 #] &] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
PROG
(Magma) [ n: n in [1..140 by 2] | IsEven(SumOfDivisors(n)-2*n) ]; // Klaus Brockhaus, Apr 15 2009
(PARI) isok(n) = (n>0) && (n % 2) && ! issquare(n); \\ Michel Marcus, Aug 28 2013
(Python)
from itertools import count, islice
from sympy.ntheory.primetest import is_square
def A088828_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:not is_square(n), count(max(startvalue+(startvalue&1^1), 1), 2))
A088828_list = list(islice(A088828_gen(), 30)) # Chai Wah Wu, Jul 06 2023
(Python)
from math import isqrt
def A088828(n): return (s:=(m:=isqrt(k:=(n<<1)-1))+(k-m*(m+1)>=1))+k+(s&1) # Chai Wah Wu, Jun 19 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Oct 28 2003
EXTENSIONS
Entry revised by N. J. A. Sloane, Jan 31 2014 at the suggestion of Omar E. Pol
STATUS
approved