

A182320


Primes p = prime(n) such that the equation prime(n+k)  prime(n) = 6^(k1) has at least one solution, k>0.


1



2, 5, 7, 11, 13, 17, 37, 41, 67, 97, 101, 103, 107, 191, 193, 223, 227, 277, 307, 311, 347, 457, 461, 613, 641, 773, 821, 823, 853, 857, 877, 881, 1013, 1087, 1091, 1277, 1297, 1301, 1373, 1423, 1427, 1447, 1481, 1483, 1487, 1607, 1663, 1693, 1811, 1867, 1871
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The first term having k=5 as solution is larger than 10^9.  M. F. Hasler, May 20 2012


LINKS



EXAMPLE

a(1) = 2 = prime(1) = prime(1+1)  6^(11) = 3  1 is the only term with k=1 as solution.
a(2) = 5 = prime(3) = prime(3+2)  6^(21) = 11  6.
a(26) = 773 = prime(137) = prime(137+3)  6^2 = 809  36 is the first term having k=3 as smallest solution.
10915517 = prime(721294) = prime(721294+4)  6^3 = 10915733  216 is the first term having k=4 as solution.  M. F. Hasler, May 20 2012


PROG

(PARI) is_A182320(p)={isprime(p)return; my(q=p); for(k=0, 9, p+6^k==(q=nextprime(q+1))&return(1))} \\ M. F. Hasler, May 20 2012


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



