|
|
A182217
|
|
Primes p = prime(n) such that there is k>0 for which prime(n+k) = prime(n) + 4^(k-1).
|
|
1
|
|
|
2, 3, 43, 73, 151, 157, 163, 181, 277, 337, 367, 373, 433, 487, 601, 631, 643, 727, 757, 811, 823, 937, 967, 1093, 1213, 1471, 1483, 1543, 1567, 1693, 1873, 2083, 2137, 2281, 2341, 2383, 2647, 2671, 2953, 3307, 3313, 3517, 3607, 3847, 4003, 4441, 4447
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..47.
|
|
EXAMPLE
|
2=prime(1+1)-4^(1-1)=3-1, 3=prime(2+2)-4^(2-1)=7-4, 43=prime(14+3)-4^(3-1)=59-16, 73=prime(21+3)-4^(3-1)=89-16.
|
|
PROG
|
(PARI) is_A182217(p)={isprime(p) || return; my(q=p); for(k=0, 9, p+4^k==(q=nextprime(q+1)) & return(1))} \\ M. F. Hasler, May 20 2012
(PARI) for(n=1, 9999, for(k=1, 9, prime(n+k)-prime(n)==4^(k-1)&!print1(prime(n)", ")&break)) \\ M. F. Hasler, May 20 2012
|
|
CROSSREFS
|
Cf. A001223.
Sequence in context: A237414 A051099 A162712 * A233314 A062581 A077520
Adjacent sequences: A182214 A182215 A182216 * A182218 A182219 A182220
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gerasimov Sergey, Apr 19 2012
|
|
STATUS
|
approved
|
|
|
|