

A237414


Primes p with p^2  2 and prime(p)^2  2 both prime.


3



2, 3, 43, 47, 107, 139, 191, 211, 223, 239, 293, 313, 337, 541, 743, 757, 863, 1013, 1153, 1231, 1619, 2113, 2137, 2287, 2297, 2423, 2543, 2729, 2749, 2897, 3079, 3089, 3313, 3863, 3947, 4241, 4271, 4583, 4649, 4993, 5581, 6571, 6637, 6911, 7547, 8629, 8849, 8867, 9049, 9661
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

According to the conjecture in A237413, this sequence should have infinitely many terms.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000
Z.W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014


EXAMPLE

a(1) = 2 since 2^2  2 = 2 and prime(2)^2  2 = 3^2  2 = 7 are both prime.


MATHEMATICA

p[n_]:=PrimeQ[n^22]
n=0; Do[If[p[Prime[k]]&&p[Prime[Prime[k]]], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 1000}]


CROSSREFS

Cf. A000040, A049002, A062326, A230502, A237413.
Sequence in context: A126018 A257467 A255092 * A051099 A162712 A182217
Adjacent sequences: A237411 A237412 A237413 * A237415 A237416 A237417


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Feb 07 2014


STATUS

approved



