|
|
A237414
|
|
Primes p with p^2 - 2 and prime(p)^2 - 2 both prime.
|
|
3
|
|
|
2, 3, 43, 47, 107, 139, 191, 211, 223, 239, 293, 313, 337, 541, 743, 757, 863, 1013, 1153, 1231, 1619, 2113, 2137, 2287, 2297, 2423, 2543, 2729, 2749, 2897, 3079, 3089, 3313, 3863, 3947, 4241, 4271, 4583, 4649, 4993, 5581, 6571, 6637, 6911, 7547, 8629, 8849, 8867, 9049, 9661
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
According to the conjecture in A237413, this sequence should have infinitely many terms.
|
|
LINKS
|
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
|
|
EXAMPLE
|
a(1) = 2 since 2^2 - 2 = 2 and prime(2)^2 - 2 = 3^2 - 2 = 7 are both prime.
|
|
MATHEMATICA
|
p[n_]:=PrimeQ[n^2-2]
n=0; Do[If[p[Prime[k]]&&p[Prime[Prime[k]]], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 1000}]
|
|
CROSSREFS
|
Cf. A000040, A049002, A062326, A230502, A237413.
Sequence in context: A126018 A257467 A255092 * A051099 A162712 A182217
Adjacent sequences: A237411 A237412 A237413 * A237415 A237416 A237417
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zhi-Wei Sun, Feb 07 2014
|
|
STATUS
|
approved
|
|
|
|