login
A182215
Bondage number of the Cartesian product graph G = C_n X C_3.
0
2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5
OFFSET
4,1
COMMENTS
Theorem 5.1.2 of Xu, and proved in Sohn, 2007. The bondage number of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with domination number greater than the domination number of G.
REFERENCES
M. Y. Sohn, X.-D. Yuan and H. S. Jeong, The bondage number of C_3 X C_n. Journal of the Korean Mathematical Society, 44(6) (2007), 1213-1231
LINKS
FORMULA
For n>=4 a(n) = bondage number b(C_n X C_3) = 2 if n = 0 (mod 4), 4 if n = 1 or 2 (mod 4), 5 if n = 3 (mod 4).
CROSSREFS
Cf. A182214.
Sequence in context: A009622 A232845 A269300 * A036443 A036437 A053306
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Apr 19 2012
STATUS
approved