|
|
A182215
|
|
Bondage number of the Cartesian product graph G = C_n X C_3.
|
|
0
|
|
|
2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,1
|
|
COMMENTS
|
Theorem 5.1.2 of Xu, and proved in Sohn, 2007. The bondage number of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with domination number greater than the domination number of G.
|
|
REFERENCES
|
M. Y. Sohn, X.-D. Yuan and H. S. Jeong, The bondage number of C_3 X C_n. Journal of the Korean Mathematical Society, 44(6) (2007), 1213-1231
|
|
LINKS
|
Table of n, a(n) for n=4..91.
Jun-Ming Xu, On Bondage Numbers of Graphs -- a survey with some comments, arXiv:1204.4010v1 [math.CO], Apr 18 2012
|
|
FORMULA
|
For n>=4 a(n) = bondage number b(C_n X C_3) = 2 if n = 0 (mod 4), 4 if n = 1 or 2 (mod 4), 5 if n = 3 (mod 4).
|
|
CROSSREFS
|
Cf. A182214.
Sequence in context: A009622 A232845 A269300 * A036443 A036437 A053306
Adjacent sequences: A182212 A182213 A182214 * A182216 A182217 A182218
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Jonathan Vos Post, Apr 19 2012
|
|
STATUS
|
approved
|
|
|
|