The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182215 Bondage number of the Cartesian product graph G = C_n X C_3. 0
 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5, 2, 4, 4, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,1 COMMENTS Theorem 5.1.2 of Xu, and proved in Sohn, 2007. The bondage number of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with domination number greater than the domination number of G. REFERENCES M. Y. Sohn, X.-D. Yuan and H. S. Jeong, The bondage number of C_3 X C_n. Journal of the Korean Mathematical Society, 44(6) (2007), 1213-1231 LINKS Jun-Ming Xu, On Bondage Numbers of Graphs -- a survey with some comments, arXiv:1204.4010v1 [math.CO], Apr 18 2012 FORMULA For n>=4 a(n) = bondage number b(C_n X C_3) = 2 if n = 0 (mod 4), 4 if n = 1 or 2 (mod 4), 5 if n = 3 (mod 4). CROSSREFS Cf. A182214. Sequence in context: A009622 A232845 A269300 * A036443 A036437 A053306 Adjacent sequences: A182212 A182213 A182214 * A182216 A182217 A182218 KEYWORD nonn,easy AUTHOR Jonathan Vos Post, Apr 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 06:57 EDT 2023. Contains 361673 sequences. (Running on oeis4.)