|
|
A182213
|
|
a(n) = n! mod Fibonacci(n).
|
|
4
|
|
|
0, 0, 0, 0, 0, 0, 9, 0, 32, 10, 33, 0, 37, 273, 80, 840, 1116, 816, 404, 1485, 1742, 7854, 27833, 0, 49100, 37681, 66606, 85839, 222482, 656920, 1335931, 417165, 362268, 3309347, 1266460, 976752, 20352231, 19601527, 4303068, 8848455, 136897669, 254107048
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,7
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
a(n) = A000142(n) mod A000045(n), n>0.
a(n) = n! mod fibonacci(n), n>0.
|
|
EXAMPLE
|
a(6) = 720 mod 8 = 0, a(7)= 5040 mod 13 = 9.
|
|
MATHEMATICA
|
Table[Mod[n!, Fibonacci[n]], {n, 50}] (* T. D. Noe, Apr 19 2012 *)
|
|
PROG
|
(Python)
prpr = 0
prev = 1
fa = 1
for i in range(2, 50):
print(fa % prev, end=', ')
fa *= i
current = prev + prpr
prpr = prev
prev = current
(PARI) list(maxx)={n=1; cnt=0; while(n<=maxx,
cnt++; print(cnt, " ", n!%fibonacci(n)); n++); } \\ Bill McEachen, Feb 03 2014
(Magma) [Factorial(n) mod Fibonacci(n): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
|
|
CROSSREFS
|
Cf. A000045, A000142.
Sequence in context: A076262 A167301 A177741 * A340954 A087094 A343575
Adjacent sequences: A182210 A182211 A182212 * A182214 A182215 A182216
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Alex Ratushnyak, Apr 19 2012
|
|
STATUS
|
approved
|
|
|
|