login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087094
a(n) = smallest k such that (10^k-1)/9 == 0 mod prime(n)^2, or 0 if no such k exists.
4
0, 9, 0, 42, 22, 78, 272, 342, 506, 812, 465, 111, 205, 903, 2162, 689, 3422, 3660, 2211, 2485, 584, 1027, 3403, 3916, 9312, 404, 3502, 5671, 11772, 12656, 5334, 17030, 1096, 6394, 22052, 11325, 12246, 13203, 27722, 7439, 31862, 32580, 18145, 37056, 19306
OFFSET
1,2
COMMENTS
For a given a(n)>0, all of the values of k such that (10^k-1)/9=0 mod prime(n)^2 is given by the sequence a(n)*A000027, i.e. integral multiples of a(n). For example, for n=2, prime(2)=3, a(n)=9, the set of values of k for which (10^k-1)/9=0 mod 3^2 is 9*A000027=9,18,27,36,45,...
The union of the collection of sequences formed from the nonzero terms of a(n)*A000027, gives the values of k for which (10^k-1)/9 is not squarefree, see A046412. All of terms of the sequence a(n) are integer multiples of prime(n) for primes <1000 except for a(93)=486 where prime(93)=487. Conjecture: there are no 0 terms after a(3).
That conjecture is easily proved, for a(n) is just the multiplicative order of 10 modulo (prime(n))^2 for n>3. - Jeppe Stig Nielsen, Dec 28 2015
LINKS
FORMULA
For n>3, a(n) = A084680(prime(n)^2) = A084680(A001248(n)), Jeppe Stig Nielsen, Dec 28 2015
EXAMPLE
a(2)=9 since 9 is least value of k for which (10^k-1)/9=0 mod 3^2.
MAPLE
0, 9, 0, seq(numtheory:-order(10, ithprime(i)^2), i=4..100); # Robert Israel, Dec 30 2015
PROG
(PARI) a(n)=p=prime(n); 10%p==0 && return(0); for(k=1, p^2, ((10^k-1)/9) % p^2 == 0 && return(k)); error() \\ Jeppe Stig Nielsen, Dec 28 2015
(PARI) a(n)=p=prime(n); if(10%p==0, 0, 10%p==1, 9, znorder(Mod(10, p^2))) \\ Jeppe Stig Nielsen, Dec 28 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Ray Chandler, Aug 10 2003
STATUS
approved