login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343575
a(n) = floor((2+sqrt(5))^n - 2^(n+1)) mod (20*n).
2
0, 9, 0, 49, 0, 9, 0, 129, 60, 49, 0, 49, 0, 9, 100, 129, 0, 249, 0, 49, 340, 9, 0, 449, 0, 9, 240, 289, 0, 249, 0, 129, 60, 9, 600, 49, 0, 9, 580, 449, 0, 609, 0, 289, 700, 9, 0, 449, 700, 249, 60, 289, 0, 969, 200, 129, 60, 9, 0, 49, 0, 9, 1240, 769, 0, 369, 0
OFFSET
1,2
COMMENTS
Whenever n is an odd prime, a(n) is 0 (see M. Penn).
LINKS
M. Penn, Hello, old friend..., YouTube video.
FORMULA
From Jianing Song, Jun 07 2021: (Start)
For even n, a(n) = 10*(A345031(n) mod (2*n)) - 1;
For odd n, a(n) = 10*(A345031(n) mod (2*n)). (End)
MATHEMATICA
Table[Mod[Floor[(2+Sqrt[5])^n-2^(n+1)], 20n], {n, 67}] (* Stefano Spezia, Apr 21 2021 *)
PROG
(PARI) a(n) = my(M = [6, -7, -2; 1, 0, 0; 0, 1, 0]); 10*((M^n)[3, 1] % (2*n)) - !(n%2) \\ Jianing Song, Jun 07 2021
CROSSREFS
Cf. A345031.
Sequence in context: A340954 A087094 A375682 * A270010 A167319 A231948
KEYWORD
nonn,easy
AUTHOR
William C. Laursen, Apr 20 2021
EXTENSIONS
More terms from Stefano Spezia, Apr 21 2021
STATUS
approved