OFFSET
0,4
COMMENTS
a(n) is the lower-left entry of {{6, -7, -2}, {1, 0, 0}, {0, 1, 0}}^n.
2p = A100484(k) divides a(p) for odd prime p = prime(k).
a(n) and n have the opposite parity for n >= 1. - Jianing Song, Jun 09 2021
LINKS
Jianing Song, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,-7,-2).
FORMULA
a(n) = (((1 + sqrt(5))/2)^(3n) + ((1 - sqrt(5))/2)^(3n) - 2^(n+1))/10.
Relation with A343575:
For even n, A343575(n) = 10*(a(n) mod (2*n)) - 1;
For odd n, A343575(n) = 10*(a(n) mod (2*n)).
O.g.f.: x^2/((1 - 2*x)*(1 - 4*x - x^2)).
E.g.f.: (exp((2 + sqrt(5))*x) + exp((2 - sqrt(5))*x) - 2*exp(2*x))/10.
PROG
(PARI) a(n) = my(M = [6, -7, -2; 1, 0, 0; 0, 1, 0]); (M^n)[3, 1]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Jun 06 2021
STATUS
approved