login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345031
a(n) = 6*a(n-1) - 7*a(n-2) - 2*a(n-3) for n >= 3, with a(0) = a(1) = 0, a(2) = 1.
2
0, 0, 1, 6, 29, 130, 565, 2422, 10317, 43818, 185845, 787710, 3337709, 14140594, 59904181, 253765510, 1074982605, 4553728698, 19289962933, 81713711502, 346145071085, 1466294520130, 6211324200181, 26311593418006, 111457702066509, 472142410072650
OFFSET
0,4
COMMENTS
a(n) is the lower-left entry of {{6, -7, -2}, {1, 0, 0}, {0, 1, 0}}^n.
2p = A100484(k) divides a(p) for odd prime p = prime(k).
a(n) and n have the opposite parity for n >= 1. - Jianing Song, Jun 09 2021
FORMULA
a(n) = (((1 + sqrt(5))/2)^(3n) + ((1 - sqrt(5))/2)^(3n) - 2^(n+1))/10.
Relation with A343575:
For even n, A343575(n) = 10*(a(n) mod (2*n)) - 1;
For odd n, A343575(n) = 10*(a(n) mod (2*n)).
O.g.f.: x^2/((1 - 2*x)*(1 - 4*x - x^2)).
E.g.f.: (exp((2 + sqrt(5))*x) + exp((2 - sqrt(5))*x) - 2*exp(2*x))/10.
PROG
(PARI) a(n) = my(M = [6, -7, -2; 1, 0, 0; 0, 1, 0]); (M^n)[3, 1]
CROSSREFS
Cf. A343575.
Sequence in context: A081674 A173413 A008549 * A351146 A026675 A026873
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Jun 06 2021
STATUS
approved