login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345032
Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} k^(floor(n/j) - 1).
4
1, 1, 1, 1, 2, 2, 1, 3, 3, 2, 1, 4, 6, 4, 3, 1, 5, 11, 12, 5, 3, 1, 6, 18, 32, 21, 6, 4, 1, 7, 27, 70, 87, 41, 7, 4, 1, 8, 38, 132, 263, 258, 74, 8, 5, 1, 9, 51, 224, 633, 1047, 745, 144, 9, 5, 1, 10, 66, 352, 1305, 3158, 4120, 2224, 275, 10, 6, 1, 11, 83, 522, 2411, 7821, 15659, 16460, 6605, 541, 11, 6
OFFSET
1,5
FORMULA
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j * (1 - x^j)/(1 - k*x^j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 3, 6, 11, 18, 27, 38, ...
2, 4, 12, 32, 70, 132, 224, ...
3, 5, 21, 87, 263, 633, 1305, ...
3, 6, 41, 258, 1047, 3158, 7821, ...
MATHEMATICA
T[n_, 0] := Floor[(n + 1)/2]; T[n_, k_] := Sum[k^(Floor[n/j] - 1), {j, 1, n}]; Table[T[k, n - k], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, Jun 06 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, k^(n\j-1));
CROSSREFS
Columns k=0..3 give A110654, A000027, A345028, A345029.
T(n,n) gives A345030.
Sequence in context: A114115 A126268 A193739 * A182535 A181186 A364197
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jun 06 2021
STATUS
approved