login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} k^(floor(n/j) - 1).
4

%I #18 Jun 06 2021 08:59:25

%S 1,1,1,1,2,2,1,3,3,2,1,4,6,4,3,1,5,11,12,5,3,1,6,18,32,21,6,4,1,7,27,

%T 70,87,41,7,4,1,8,38,132,263,258,74,8,5,1,9,51,224,633,1047,745,144,9,

%U 5,1,10,66,352,1305,3158,4120,2224,275,10,6,1,11,83,522,2411,7821,15659,16460,6605,541,11,6

%N Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} k^(floor(n/j) - 1).

%F G.f. of column k: (1/(1 - x)) * Sum_{j>=1} x^j * (1 - x^j)/(1 - k*x^j).

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 3, 4, 5, 6, 7, ...

%e 2, 3, 6, 11, 18, 27, 38, ...

%e 2, 4, 12, 32, 70, 132, 224, ...

%e 3, 5, 21, 87, 263, 633, 1305, ...

%e 3, 6, 41, 258, 1047, 3158, 7821, ...

%t T[n_, 0] := Floor[(n + 1)/2]; T[n_, k_] := Sum[k^(Floor[n/j] - 1), {j, 1, n}]; Table[T[k, n - k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Jun 06 2021 *)

%o (PARI) T(n, k) = sum(j=1, n, k^(n\j-1));

%Y Columns k=0..3 give A110654, A000027, A345028, A345029.

%Y T(n,n) gives A345030.

%Y Cf. A344821, A345033.

%K nonn,tabl

%O 1,5

%A _Seiichi Manyama_, Jun 06 2021