login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081674
Generalized Poly-Bernoulli numbers.
3
0, 1, 6, 29, 130, 561, 2366, 9829, 40410, 164921, 669526, 2707629, 10919090, 43942081, 176565486, 708653429, 2841788170, 11388676041, 45619274246, 182670807229, 731264359650, 2926800830801, 11712433499806, 46865424529029, 187508769705530, 750176293590361, 3001128818666166
OFFSET
0,3
COMMENTS
Binomial transform of A027649. Inverse binomial transform of A081675.
With offset 1, partial sums of A085350. - Paul Barry, Jun 24 2003
Number of walks of length 2n+2 between two nodes at distance 4 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004
FORMULA
a(n) = ((4^(n+1) - 1)/3 - 3^n)/2 = (4*4^n - 3*3^n - 1)/6.
a(n) = (A002450(n+1) + A000244(n))/2.
G.f.: x*(1-2*x)/((1-x)*(1-3*x)*(1-4*x)).
From Elmo R. Oliveira, Aug 29 2024: (Start)
E.g.f.: exp(x)*(4*exp(3*x) - 3*exp(2*x) - 1)/6.
a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3) for n > 2. (End)
MATHEMATICA
Join[{a=0, b=1}, Table[c=7*b-12*a-1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *)
CoefficientList[Series[(x(1-2x))/((1-x)(1-3x)(1-4x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -19, 12}, {0, 1, 6}, 30] (* Harvey P. Dale, Nov 28 2018 *)
PROG
(Magma) [((4^(n+1)-1)/3-3^n)/2: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 28 2003
STATUS
approved