login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085350
Binomial transform of poly-Bernoulli numbers A027649.
8
1, 5, 23, 101, 431, 1805, 7463, 30581, 124511, 504605, 2038103, 8211461, 33022991, 132623405, 532087943, 2133134741, 8546887871, 34230598205, 137051532983, 548593552421, 2195536471151, 8785632669005, 35152991029223
OFFSET
0,2
COMMENTS
Binomial transform is A085351.
a(n) mod 10 = period 4:repeat 1,5,3,1 = A132400. - Paul Curtz, Nov 13 2009
FORMULA
G.f.: (1-2x)/((1-3x)(1-4x)).
E.g.f.: 2exp(4x) - exp(3x).
a(n) = 2*4^n-3^n.
From Paul Curtz, Nov 13 2009: (Start)
a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3);
a(n) = 4*a(n-1) + 3^(n-1), both like A005061 (note for A005061 dual formula a(n) = 3*a(n-1) + 4^(n-1) = 3*a(n-1) + A000302(n-1)).
a(n) = 3*a(n-1) + 2^(2n+1) = 3*a(n-1) + A004171(n).
a(n) = A005061(n) + A000302(n).
b(n) = mix(A005061, A085350) = 0,1,1,5,7,23,... = differences of (A167762 = 0,0,1,2,7,14,37,...); b(n) differences = A167784. (End)
MATHEMATICA
LinearRecurrence[{4, 9, -36}, {1, 5, 23}, 30] (* Harvey P. Dale, Nov 30 2011 *)
LinearRecurrence[{7, -12}, {1, 5}, 23] (* Ray Chandler, Aug 03 2015 *)
PROG
(Magma) [2*4^n-3^n: n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
CROSSREFS
a(n-1) = A080643(n)/2 = A081674(n+1) - A081674(n).
Cf. A000244 (3^n).
Sequence in context: A034958 A229008 A274322 * A113443 A124999 A258431
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 24 2003
STATUS
approved