The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085350 Binomial transform of poly-Bernoulli numbers A027649. 8
1, 5, 23, 101, 431, 1805, 7463, 30581, 124511, 504605, 2038103, 8211461, 33022991, 132623405, 532087943, 2133134741, 8546887871, 34230598205, 137051532983, 548593552421, 2195536471151, 8785632669005, 35152991029223 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Binomial transform is A085351.
a(n) mod 10 = period 4:repeat 1,5,3,1 = A132400. - Paul Curtz, Nov 13 2009
LINKS
FORMULA
G.f.: (1-2x)/((1-3x)(1-4x)).
E.g.f.: 2exp(4x) - exp(3x).
a(n) = 2*4^n-3^n.
From Paul Curtz, Nov 13 2009: (Start)
a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3);
a(n) = 4*a(n-1) + 3^(n-1), both like A005061 (note for A005061 dual formula a(n) = 3*a(n-1) + 4^(n-1) = 3*a(n-1) + A000302(n))).
a(n) = 3*a(n-1) + 2^(2n+1) = 3*a(n-1) + A004171(n).
a(n) = A005061(n) + A000302(n).
b(n) = mix(A005061, A085350) = 0,1,1,5,7,23,... = differences of (A167762 = 0,0,1,2,7,14,37,...); b(n) differences = A167784. (End)
MATHEMATICA
LinearRecurrence[{4, 9, -36}, {1, 5, 23}, 30] (* Harvey P. Dale, Nov 30 2011 *)
LinearRecurrence[{7, -12}, {1, 5}, 23] (* Ray Chandler, Aug 03 2015 *)
PROG
(Magma) [2*4^n-3^n: n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
CROSSREFS
a(n-1) = A080643(n)/2 = A081674(n+1) - A081674(n).
Cf. A000244 (3^n).
Sequence in context: A034958 A229008 A274322 * A113443 A124999 A258431
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 24 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 12:27 EDT 2024. Contains 372858 sequences. (Running on oeis4.)