login
A085351
Expansion of (1-3*x)/((1-4*x)*(1-5*x)).
4
1, 6, 34, 186, 994, 5226, 27154, 139866, 715714, 3644106, 18482674, 93461946, 471504034, 2374297386, 11938595794, 59961414426, 300880813954, 1508699037066, 7560675054514, 37872094749306, 189635351653474
OFFSET
0,2
COMMENTS
Binomial transform of A085350. Second binomial transform of poly-Bernoulli numbers A027649.
FORMULA
G.f.: (1-3*x)/((1-4*x)*(1-5*x)).
a(n) = 2*5^n - 4^n.
a(n) = 9*a(n-1) - 20*a(n-2) for n>1. - Colin Barker, Jun 25 2020
MATHEMATICA
CoefficientList[Series[(1-3x)/((1-4x)(1-5x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{9, -20}, {1, 6}, 30] (* Harvey P. Dale, Jan 07 2022 *)
PROG
(PARI) Vec((1 - 3*x) / ((1 - 4*x)*(1 - 5*x)) + O(x^25)) \\ Colin Barker, Jun 25 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 24 2003
STATUS
approved