OFFSET
0,2
COMMENTS
Largest coefficient of (1+4x+x^2)^n. - Paul Barry, Dec 15 2003
Row sums of triangle in A124574. - Philippe Deléham, Sep 27 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in 4 colors. - N-E. Fahssi, Feb 05 2008
Diagonal of rational function 1/(1 - (x^2 + 4*x*y + y^2)). - Gheorghe Coserea, Aug 01 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Hacène Belbachir, Abdelghani Mehdaoui and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Isaac DeJager, Madeleine Naquin and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011.
Francesc Fite and Andrew V. Sutherland, Sato-Tate distributions of twists of y^2= x^5-x and y^2= x^6+1, arXiv preprint arXiv:1203.1476 [math.NT], 2012. - From N. J. A. Sloane, Sep 14 2012
Rigoberto Flórez, Leandro Junes and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
a(n) = Sum_{m=0..n} Sum_{k=0..m} C(n, m)*C(m, k)*C(2k, k).
G.f.: 1/sqrt((1-2*x)*(1-6*x)). - Vladeta Jovovic, Oct 09 2003
a(n) = Sum_{k=0..n} 2^(n-k) * C(n, k) * C(2*k, k). - Paul Barry, Jan 27 2005
a(n) = Sum_{k=0..n} 6^(n-k) * (-1)^k * C(n,k) * C(2*k,k). - Paul D. Hanna, Dec 09 2018
D-finite with recurrence: n*a(n) = 4*(2*n-1)*a(n-1) - 12*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ sqrt(3/(2*Pi*n))*6^n. - Vaclav Kotesovec, Oct 13 2012
a(n) = 2^n*hypergeom([-n,1/2], [1], -2). - Peter Luschny, Apr 26 2016
a(n) = GegenbauerC(n, -n, -2). - Peter Luschny, May 09 2016
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (2 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (6 - 4*x^2)^n/sqrt(1 - x^2) dx . - Peter Bala, Jan 27 2020
From Peter Bala, Jan 10 2022: (Start)
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 4*x + 17*x^2 + 76*x^3 + 354*x^4 + ... is the o.g.f. of A005572.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
MAPLE
seq(simplify(2^n*hypergeom([-n, 1/2], [1], -2)), n=0..23); # Peter Luschny, Apr 26 2016
seq(simplify(GegenbauerC(n, -n, -2)), n=0..23); # Peter Luschny, May 09 2016
MATHEMATICA
Table[SeriesCoefficient[1/Sqrt[(1-2*x)*(1-6*x)], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *)
PROG
(Maxima) a(n):=coeff(expand((1+4*x+x^2)^n), x^n);
makelist(a(n), n, 0, 30); /* Emanuele Munarini, Apr 27 2012 */
(PARI) x='x+O('x^66); Vec(1/sqrt((1-2*x)*(1-6*x))) \\ Joerg Arndt, May 07 2013
(PARI) {a(n) = sum(k=0, n\2, 4^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
CROSSREFS
Column 4 of A292627.
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 28 2003
STATUS
approved