login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081672
Expansion of exp(2x) - exp(0) + BesselI_0(2x).
2
1, 2, 6, 8, 22, 32, 84, 128, 326, 512, 1276, 2048, 5020, 8192, 19816, 32768, 78406, 131072, 310764, 524288, 1233332, 2097152, 4899736, 8388608, 19481372, 33554432, 77509464, 134217728, 308552056, 536870912, 1228859344
OFFSET
0,2
COMMENTS
Inverse binomial transform of A081673.
LINKS
FORMULA
E.g.f.: exp(2x) - exp(0) + BesselI_0(2x).
Conjecture: n*a(n) +2*(1-n)*a(n-1) +4*(1-n)*a(n-2) +8*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 12 2012
a(n) ~ 2^n * (1+(1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 04 2014
From Benedict W. J. Irwin, Jun 03 2016: (Start)
For odd n, a(n) = 2^n. For even n>0, a(n) = 2^n*(1+n!/(2^n*(n/2)!^2)).
G.f.: 1/sqrt(1-4*z^2) + 1/(1-2*z) - 1. (End)
E.g.f. satisfies y''' - (2*x-2)*y'' - (4*x + 2)*y' + (8*x-4)*y + 8x - 4 = 0, which implies Mathar's conjectured recurrence. - Robert Israel, Jun 03 2016
MAPLE
1, seq(op([2^(2*k-1), 2^(2*k)+(2*k)!/k!^2]), k=1..30); # Robert Israel, Jun 03 2016
MATHEMATICA
CoefficientList[Series[1/Sqrt[1 - 4 z^2] + 1/(1 - 2 z) - 1, {z, 0, 20}], z] (* Benedict W. J. Irwin, Jun 03 2016 *)
CoefficientList[Series[Exp[2*x] - 1 + BesselI[0, 2*x], {x, 0, 50}],
x]*Range[0, 50]! (* G. C. Greubel, Jun 03 2016 *)
PROG
(PARI) a(n)=if(n, if(n%2, 1, 1+n!/(2^n*(n/2)!^2))<<n, 1) \\ Charles R Greathouse IV, Jun 10 2016
(PARI) Vec(1/sqrt(1-4*x^2)+1/(1-2*x)-1) \\ Charles R Greathouse IV, Jun 10 2016
CROSSREFS
Sequence in context: A343256 A129342 A045654 * A332348 A137072 A153802
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 28 2003
STATUS
approved