login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Poly-Bernoulli numbers.
3

%I #28 Aug 29 2024 21:09:52

%S 0,1,6,29,130,561,2366,9829,40410,164921,669526,2707629,10919090,

%T 43942081,176565486,708653429,2841788170,11388676041,45619274246,

%U 182670807229,731264359650,2926800830801,11712433499806,46865424529029,187508769705530,750176293590361,3001128818666166

%N Generalized Poly-Bernoulli numbers.

%C Binomial transform of A027649. Inverse binomial transform of A081675.

%C With offset 1, partial sums of A085350. - _Paul Barry_, Jun 24 2003

%C Number of walks of length 2n+2 between two nodes at distance 4 in the cycle graph C_12. - _Herbert Kociemba_, Jul 05 2004

%H Vincenzo Librandi, <a href="/A081674/b081674.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-19,12).

%F a(n) = ((4^(n+1) - 1)/3 - 3^n)/2 = (4*4^n - 3*3^n - 1)/6.

%F a(n) = (A002450(n+1) + A000244(n))/2.

%F G.f.: x*(1-2*x)/((1-x)*(1-3*x)*(1-4*x)).

%F From _Elmo R. Oliveira_, Aug 29 2024: (Start)

%F E.g.f.: exp(x)*(4*exp(3*x) - 3*exp(2*x) - 1)/6.

%F a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3) for n > 2. (End)

%t Join[{a=0,b=1},Table[c=7*b-12*a-1;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 19 2011 *)

%t CoefficientList[Series[(x(1-2x))/((1-x)(1-3x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{8,-19,12},{0,1,6},30] (* _Harvey P. Dale_, Nov 28 2018 *)

%o (Magma) [((4^(n+1)-1)/3-3^n)/2: n in [0..30]]; // _Vincenzo Librandi_, Jul 17 2011

%Y Cf. A000244, A002450, A027649, A081675, A085350.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Mar 28 2003