The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054146 a(n) = A054145(n)/2. 3
 0, 1, 6, 29, 128, 536, 2168, 8556, 33152, 126640, 478304, 1789840, 6646272, 24519680, 89956224, 328437184, 1194102784, 4325299456, 15615510016, 56209986816, 201798074368, 722731821056, 2582790830080, 9211619462144 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (8,-20,16,-4). FORMULA From G. C. Greubel, Aug 01 2019: (Start) a(n) = ((n-2)*((2 + sqrt(2))^n + (2 - sqrt(2))^n) + sqrt(2)*((2 + sqrt(2))^n - (2 - sqrt(2))^n))/16. G.f.: x*(1 - x)^2/(1 - 4*x + 2*x^2)^2. (End) MATHEMATICA LinearRecurrence[{8, -20, 16, -4}, {0, 1, 6, 29}, 30] (* G. C. Greubel, Aug 01 2019 *) PROG (PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^2/(1-4*x+2*x^2)^2)) \\ G. C. Greubel, Aug 01 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^2/(1-4*x+2*x^2)^2 )); // G. C. Greubel, Aug 01 2019 (Sage) (x*(1-x)^2/(1-4*x+2*x^2)^2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019 (GAP) a:=[0, 1, 6, 29];; for n in [5..30] do a[n]:=8*a[n-1]-20*a[n-2] +16*a[n-3]-4*a[n-4]; od; a; # G. C. Greubel, Aug 01 2019 CROSSREFS Cf. A054144, A054145. Sequence in context: A111644 A225618 A081278 * A172062 A081674 A173413 Adjacent sequences:  A054143 A054144 A054145 * A054147 A054148 A054149 KEYWORD nonn AUTHOR Clark Kimberling, Mar 18 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 19:12 EDT 2021. Contains 345365 sequences. (Running on oeis4.)