login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054146
a(n) = A054145(n)/2.
3
0, 1, 6, 29, 128, 536, 2168, 8556, 33152, 126640, 478304, 1789840, 6646272, 24519680, 89956224, 328437184, 1194102784, 4325299456, 15615510016, 56209986816, 201798074368, 722731821056, 2582790830080, 9211619462144
OFFSET
0,3
FORMULA
From G. C. Greubel, Aug 01 2019: (Start)
a(n) = ((n-2)*((2 + sqrt(2))^n + (2 - sqrt(2))^n) + sqrt(2)*((2 + sqrt(2))^n - (2 - sqrt(2))^n))/16.
G.f.: x*(1 - x)^2/(1 - 4*x + 2*x^2)^2. (End)
MATHEMATICA
LinearRecurrence[{8, -20, 16, -4}, {0, 1, 6, 29}, 30] (* G. C. Greubel, Aug 01 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^2/(1-4*x+2*x^2)^2)) \\ G. C. Greubel, Aug 01 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^2/(1-4*x+2*x^2)^2 )); // G. C. Greubel, Aug 01 2019
(Sage) (x*(1-x)^2/(1-4*x+2*x^2)^2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
(GAP) a:=[0, 1, 6, 29];; for n in [5..30] do a[n]:=8*a[n-1]-20*a[n-2] +16*a[n-3]-4*a[n-4]; od; a; # G. C. Greubel, Aug 01 2019
CROSSREFS
Sequence in context: A111644 A225618 A081278 * A172062 A081674 A173413
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 18 2000
STATUS
approved