OFFSET
1,1
COMMENTS
Even semiprimes.
Essentially the same as A001747.
Right edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
A253046(a(n)) > a(n). - Reinhard Zumkeller, Dec 26 2014
Apart from first term, these are the tau2-primes as defined in [Anderson, Frazier] and [Lanterman]. - Michel Marcus, May 15 2019
For every positive integer b and each m in this sequence b^(m-1) == b (mod m). - Florian Baur, Nov 26 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
D. D. Anderson and Andrea M. Frazier, On a general theory of factorization in integral domains, Rocky Mountain J. Math., Volume 41, Number 3 (2011), 663-705. See pp. 698, 699, 702.
James Lanterman, Irreducibles in the Integers modulo n, arXiv:1210.2991 [math.NT], 2012.
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
a(n) = 2 * A000040(n).
a(n) = A001747(n+1).
n>1: A000005(a(n)) = 4; A000203(a(n)) = 3*A008864(n); A000010(a(n)) = A006093(n); intersection of A001358 and A005843.
a(n) = A116366(n-1, n-1) for n>1. - Reinhard Zumkeller, Feb 06 2006
a(n) = A077017(n+1), n>1. - R. J. Mathar, Sep 02 2008
a(n) = A087112(n, 1). - Reinhard Zumkeller, Nov 25 2012
A000203(a(n)) = 3*n/2 + 3, n > 1. - Wesley Ivan Hurt, Sep 07 2013
MAPLE
MATHEMATICA
2*Prime[Range[70]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
PROG
(PARI) 2*primes(70) \\ Charles R Greathouse IV, Aug 21 2011
(Haskell)
a100484 n = a100484_list !! (n-1)
a100484_list = map (* 2) a000040_list
-- Reinhard Zumkeller, Jan 31 2012
(Magma) [2*p: p in PrimesUpTo(350)]; // Vincenzo Librandi, Mar 27 2014
(GAP) 2*Filtered([1..300], IsPrime); # Muniru A Asiru, Oct 05 2018
(GAP) List([1..70], n-> 2*Primes[n]); # G. C. Greubel, May 18 2019
(Sage) [2*nth_prime(n) for n in (1..70)] # G. C. Greubel, May 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Nov 22 2004
EXTENSIONS
Simpler definition.
STATUS
approved