Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #117 Dec 14 2024 03:59:36
%S 4,6,10,14,22,26,34,38,46,58,62,74,82,86,94,106,118,122,134,142,146,
%T 158,166,178,194,202,206,214,218,226,254,262,274,278,298,302,314,326,
%U 334,346,358,362,382,386,394,398,422,446,454,458,466,478,482,502,514,526
%N The primes doubled.
%C Even semiprimes.
%C Essentially the same as A001747.
%C Right edge of the triangle in A065342. - _Reinhard Zumkeller_, Jan 30 2012
%C A253046(a(n)) > a(n). - _Reinhard Zumkeller_, Dec 26 2014
%C Apart from first term, these are the tau2-primes as defined in [Anderson, Frazier] and [Lanterman]. - _Michel Marcus_, May 15 2019
%C For every positive integer b and each m in this sequence b^(m-1) == b (mod m). - _Florian Baur_, Nov 26 2021
%H Charles R Greathouse IV, <a href="/A100484/b100484.txt">Table of n, a(n) for n = 1..10000</a>
%H D. D. Anderson and Andrea M. Frazier, <a href="https://doi.org/10.1216/RMJ-2011-41-3-663">On a general theory of factorization in integral domains</a>, Rocky Mountain J. Math., Volume 41, Number 3 (2011), 663-705. See pp. 698, 699, 702.
%H James Lanterman, <a href="https://arxiv.org/abs/1210.2991">Irreducibles in the Integers modulo n</a>, arXiv:1210.2991 [math.NT], 2012.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Semiprime.html">Semiprime</a>
%F a(n) = 2 * A000040(n).
%F a(n) = A001747(n+1).
%F n>1: A000005(a(n)) = 4; A000203(a(n)) = 3*A008864(n); A000010(a(n)) = A006093(n); intersection of A001358 and A005843.
%F a(n) = A116366(n-1, n-1) for n>1. - _Reinhard Zumkeller_, Feb 06 2006
%F a(n) = A077017(n+1), n>1. - _R. J. Mathar_, Sep 02 2008
%F A078834(a(n)) = A000040(n). - _Reinhard Zumkeller_, Sep 19 2011
%F a(n) = A087112(n, 1). - _Reinhard Zumkeller_, Nov 25 2012
%F A000203(a(n)) = 3*n/2 + 3, n > 1. - _Wesley Ivan Hurt_, Sep 07 2013
%p A100484:=n->2*ithprime(n); seq(A100484(n), n=1..70); # _Wesley Ivan Hurt_, Mar 27 2014
%t 2*Prime[Range[70]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2008 *)
%o (PARI) 2*primes(70) \\ _Charles R Greathouse IV_, Aug 21 2011
%o (Haskell)
%o a100484 n = a100484_list !! (n-1)
%o a100484_list = map (* 2) a000040_list
%o -- _Reinhard Zumkeller_, Jan 31 2012
%o (Magma) [2*p: p in PrimesUpTo(350)]; // _Vincenzo Librandi_, Mar 27 2014
%o (GAP) 2*Filtered([1..300],IsPrime); # _Muniru A Asiru_, Oct 05 2018
%o (GAP) List([1..70], n-> 2*Primes[n]); # _G. C. Greubel_, May 18 2019
%o (Sage) [2*nth_prime(n) for n in (1..70)] # _G. C. Greubel_, May 18 2019
%Y Subsequence of A091376.
%Y Cf. A046315, A152099, A179740.
%Y Cf. A001748, A253046.
%Y Row 3 of A286625, column 3 of A286623.
%K nonn,easy,changed
%O 1,1
%A _Reinhard Zumkeller_, Nov 22 2004
%E Simpler definition.