|
|
A087112
|
|
Triangle in which the n-th row contains n distinct semiprimes not listed previously with all prime factors from among the first n primes.
|
|
31
|
|
|
4, 6, 9, 10, 15, 25, 14, 21, 35, 49, 22, 33, 55, 77, 121, 26, 39, 65, 91, 143, 169, 34, 51, 85, 119, 187, 221, 289, 38, 57, 95, 133, 209, 247, 323, 361, 46, 69, 115, 161, 253, 299, 391, 437, 529, 58, 87, 145, 203, 319, 377, 493, 551, 667, 841, 62, 93, 155, 217, 341, 403, 527, 589, 713, 899, 961
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Terms through row n, sorted, will provide terms for A077553 through row n*(n+1)/2.
|
|
LINKS
|
|
|
FORMULA
|
The n-th row consists of n terms, prime(n)*prime(i), i=1..n.
|
|
EXAMPLE
|
Triangle begins:
4;
6, 9;
10, 15, 25;
14, 21, 35, 49;
22, 33, 55, 77, 121;
26, 39, 65, 91, 143, 169;
|
|
MAPLE
|
T := (n, k) -> ithprime(n) * ithprime(k):
seq(print(seq(T(n, k), k = 1..n)), n = 1..11); # Peter Luschny, Jun 25 2024
|
|
MATHEMATICA
|
Table[ Prime[j]*Prime[k], {j, 11}, {k, j}] // Flatten (* Robert G. Wilson v, Feb 06 2017 *)
|
|
PROG
|
(Haskell)
a087112 n k = a087112_tabl !! (n-1) !! (k-1)
a087112_row n = map (* last ps) ps where ps = take n a000040_list
a087112_tabl = map a087112_row [1..]
(PARI) A087112(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2); (prime(1+c) * prime(1+(n-binomial(1+c, 2)))); }; \\ Antti Karttunen, Feb 29 2024
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|