|
|
A133234
|
|
a(n) is least semiprime (not already in list) such that no 3-term subset forms an arithmetic progression.
|
|
1
|
|
|
4, 6, 9, 10, 15, 22, 25, 33, 39, 49, 55, 58, 82, 86, 87, 93, 111, 118, 121, 122, 134, 145, 185, 194, 201, 202, 206, 215, 237, 247, 274, 287, 298, 299, 303, 305, 314, 334, 335, 358, 362, 386, 446, 447, 454, 471, 482, 497, 502, 527, 529, 537, 553, 554, 562, 614
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(1) = 4, a(2) = 6, a(n) = smallest semiprime such that there is no i < j < n with a(n) - a(j) = a(j) - a(i).
|
|
MATHEMATICA
|
NextSemiprime[n_] := Block[{c = n + 1, f = 0}, While[Plus @@ Last /@ FactorInteger[c] != 2, c++ ]; c ]; f[l_List] := Block[{c, f = 0}, c = If[l == {}, 2, l[[ -1]]]; While[f == 0, c = NextSemiprime[c]; If[Intersection[l, l - (c - l)] == {}, f = 1]; ]; Append[l, c] ]; Nest[f, {}, 100] (* Ray Chandler, Nov 10 2007 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|