login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343574
a(n) = Sum_{d|n} d^d * binomial(d+n/d-1, d).
5
1, 6, 30, 272, 3130, 46794, 823550, 16778544, 387420768, 10000018820, 285311670622, 8916100779324, 302875106592266, 11112006832146486, 437893890380925960, 18446744073860555680, 827240261886336764194, 39346408075300413088392
OFFSET
1,2
FORMULA
G.f.: Sum_{k >= 1} (k * x)^k/(1 - x^k)^(k+1).
If p is prime, a(p) = p + p^p.
MATHEMATICA
a[n_] := DivisorSum[n, #^#*Binomial[# + n/# - 1, #] &]; Array[a, 20] (* Amiram Eldar, Apr 20 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^d*binomial(d+n/d-1, d));
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-x^k)^(k+1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 20 2021
STATUS
approved