OFFSET
0,3
COMMENTS
Laguerre transform is A052563. - Paul Barry, Aug 08 2008
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..350
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 530
FORMULA
E.g.f.: 1/(1 -x -2*x^2).
Recurrence: a(1)=1, a(0)=1, (-2*n^2-6*n-4)*a(n)+(-2-n)*a(n+1)+a(n+2)=0.
a(n) = Sum(1/9*(1+4*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+2*_Z^2))*n!.
a(n) = n!*A001045(n+1). - Paul Barry, Aug 08 2008
MAPLE
spec := [S, {S=Sequence(Union(Z, Prod(Z, Union(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{m = 50}, CoefficientList[Series[-1/(-1 + x + 2*x^2), {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 17 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1 -x -2*x^2))) \\ G. C. Greubel, May 17 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1 -x -2*x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 17 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
a(18)-a(19) added by G. C. Greubel, May 17 2018
STATUS
approved