login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052585
E.g.f. 1/(1-x-2*x^2).
6
1, 1, 6, 30, 264, 2520, 30960, 428400, 6894720, 123742080, 2478470400, 54486432000, 1308153369600, 34005760588800, 952248474777600, 28566146568960000, 914137612996608000, 31080323154456576000, 1118898035934142464000, 42518003720397004800000
OFFSET
0,3
COMMENTS
Laguerre transform is A052563. - Paul Barry, Aug 08 2008
LINKS
FORMULA
E.g.f.: 1/(1 -x -2*x^2).
Recurrence: a(1)=1, a(0)=1, (-2*n^2-6*n-4)*a(n)+(-2-n)*a(n+1)+a(n+2)=0.
a(n) = Sum(1/9*(1+4*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+2*_Z^2))*n!.
a(n) = n!*A001045(n+1). - Paul Barry, Aug 08 2008
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+8*x)*d/dx. Cf. A080599 and A005442. - Peter Bala, Dec 07 2011
MAPLE
spec := [S, {S=Sequence(Union(Z, Prod(Z, Union(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{m = 50}, CoefficientList[Series[-1/(-1 + x + 2*x^2), {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 17 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1 -x -2*x^2))) \\ G. C. Greubel, May 17 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1 -x -2*x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 17 2018
CROSSREFS
Sequence in context: A121772 A270845 A277073 * A304188 A343574 A051821
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
a(18)-a(19) added by G. C. Greubel, May 17 2018
STATUS
approved