The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052585 E.g.f. 1/(1-x-2*x^2). 6
 1, 1, 6, 30, 264, 2520, 30960, 428400, 6894720, 123742080, 2478470400, 54486432000, 1308153369600, 34005760588800, 952248474777600, 28566146568960000, 914137612996608000, 31080323154456576000, 1118898035934142464000, 42518003720397004800000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Laguerre transform is A052563. - Paul Barry, Aug 08 2008 LINKS G. C. Greubel, Table of n, a(n) for n = 0..350 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 530 FORMULA E.g.f.: 1/(1 -x -2*x^2). Recurrence: a(1)=1, a(0)=1, (-2*n^2-6*n-4)*a(n)+(-2-n)*a(n+1)+a(n+2)=0. a(n) = Sum(1/9*(1+4*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+2*_Z^2))*n!. a(n) = n!*A001045(n+1). - Paul Barry, Aug 08 2008 a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+8*x)*d/dx. Cf. A080599 and A005442. - Peter Bala, Dec 07 2011 MAPLE spec := [S, {S=Sequence(Union(Z, Prod(Z, Union(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); MATHEMATICA With[{m = 50}, CoefficientList[Series[-1/(-1 + x + 2*x^2), {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 17 2018 *) PROG (PARI) x='x+O('x^30); Vec(serlaplace(1/(1 -x -2*x^2))) \\ G. C. Greubel, May 17 2018 (Magma) m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1 -x -2*x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 17 2018 CROSSREFS Cf. A080599, A005442. Sequence in context: A121772 A270845 A277073 * A304188 A343574 A051821 Adjacent sequences: A052582 A052583 A052584 * A052586 A052587 A052588 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS a(18)-a(19) added by G. C. Greubel, May 17 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 06:05 EDT 2024. Contains 375008 sequences. (Running on oeis4.)