login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. 1/(1-x-2*x^2).
6

%I #23 Sep 08 2022 08:44:59

%S 1,1,6,30,264,2520,30960,428400,6894720,123742080,2478470400,

%T 54486432000,1308153369600,34005760588800,952248474777600,

%U 28566146568960000,914137612996608000,31080323154456576000,1118898035934142464000,42518003720397004800000

%N E.g.f. 1/(1-x-2*x^2).

%C Laguerre transform is A052563. - _Paul Barry_, Aug 08 2008

%H G. C. Greubel, <a href="/A052585/b052585.txt">Table of n, a(n) for n = 0..350</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=530">Encyclopedia of Combinatorial Structures 530</a>

%F E.g.f.: 1/(1 -x -2*x^2).

%F Recurrence: a(1)=1, a(0)=1, (-2*n^2-6*n-4)*a(n)+(-2-n)*a(n+1)+a(n+2)=0.

%F a(n) = Sum(1/9*(1+4*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z+2*_Z^2))*n!.

%F a(n) = n!*A001045(n+1). - _Paul Barry_, Aug 08 2008

%F a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+8*x)*d/dx. Cf. A080599 and A005442. - Peter Bala, Dec 07 2011

%p spec := [S,{S=Sequence(Union(Z,Prod(Z,Union(Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t With[{m = 50}, CoefficientList[Series[-1/(-1 + x + 2*x^2), {x, 0, m}], x]*Range[0, m]!] (* _G. C. Greubel_, May 17 2018 *)

%o (PARI) x='x+O('x^30); Vec(serlaplace(1/(1 -x -2*x^2))) \\ _G. C. Greubel_, May 17 2018

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1 -x -2*x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, May 17 2018

%Y Cf. A080599, A005442.

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E a(18)-a(19) added by _G. C. Greubel_, May 17 2018