login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052584
Expansion of e.g.f. (2 - 4*x + x^2)/((1 - x)*(1 - 2*x)).
3
2, 2, 6, 30, 216, 2040, 23760, 327600, 5201280, 93260160, 1861574400, 40914720000, 981474278400, 25512104217600, 714251739801600, 21426244519680000, 685618901839872000, 23310686975127552000, 839178328730886144000, 31888654846673264640000, 1275543760964922408960000
OFFSET
0,1
LINKS
FORMULA
Recurrence: {a(1)=2, a(2)=6, a(0)=2, (2*n^2 + 6*n + 4)*a(n) + (-6-3*n)*a(n+1) + a(n+2) = 0}.
a(n) = (1+2^(n-1))*n!, n > 0; see A000051.
From Peter Luschny, Apr 20 2009: (Start)
A weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1)=1 (which amounts to the definition B_{n} = B_{n}(1)).
a(n) = Sum_{k=0..n-1} n!*C(n-1,k)*B_{n-k-1}*2^(k+1)/(k+1). (See also A000051.) (End)
MAPLE
spec := [S, {S=Union(Sequence(Prod(Z, Sequence(Z))), Sequence(Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
a := proc(n) if n = 0 then 2 else add(n!*binomial(n-1, k)*bernoulli(n-k-1, 1)*2^(k+ 1)/(k+1), k=0..n-1) fi end: # Peter Luschny, Apr 20 2009
MATHEMATICA
With[{nn=25}, CoefficientList[Series[(2 - 4 x + x^2) / (-1 + 2 x) / (-1 + x), {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 11 2017 *)
PROG
(Magma) [2] cat [(1+2^(n-1))*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Aug 11 2017
(PARI) Vec(serlaplace((2-4*x+x^2)/((1-x)*(1-2*x)) + O(x^20))) \\ Andrew Howroyd, Oct 26 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved