login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343576
Number of permutations of [n] without fixed points and all cycles equal length.
1
1, 0, 1, 2, 9, 24, 175, 720, 6405, 42560, 436401, 3628800, 48073795, 479001600, 7116730335, 88966701824, 1474541093025, 20922789888000, 400160588853025, 6402373705728000, 133991603578884051, 2457732174030848000, 55735573291977790575, 1124000727777607680000
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{d|n, d<n} (n!/d!)*(d/n)^d for n>0, a(0) = 1.
a(n) = A261431(n) for n in { A000040, A001358 }.
EXAMPLE
a(4) = 9: (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,3,4,1), (2,4,1,3), (3,1,4,2), (3,4,2,1), (4,1,2,3), (4,3,1,2).
MAPLE
a:= n-> `if`(n=0, 1, add(n!/d!*(d/n)^d, d=numtheory[divisors](n) minus {n})):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 20 2021
PROG
(PARI) a(n) = if (n, sumdiv(n, d, if (d<n, (n!/d!)*(d/n)^d)), 1); \\ Michel Marcus, Apr 21 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary Yane, Apr 20 2021
STATUS
approved