login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343579
a(n) = Sum_{k=0..floor(n/2)} |Stirling1(n - k, k)|.
11
1, 0, 1, 1, 3, 9, 36, 176, 1030, 7039, 55098, 486346, 4780445, 51787405, 613045468, 7873065045, 109021348618, 1619197654575, 25675094145535, 432908683794379, 7733991639921585, 145933532935469016, 2900112108790279902, 60543749629794205640, 1324677739541613767983
OFFSET
0,5
COMMENTS
Equals antidiagonal sums of the triangle of unsigned Stirling numbers of the first kind (A132393).
LINKS
FORMULA
a(n) ~ n! / n^2. - Vaclav Kotesovec, Apr 09 2022
MATHEMATICA
Table[Sum[Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Vaclav Kotesovec, Apr 09 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\2, abs(stirling(n-k, k, 1))); \\ Michel Marcus, Apr 22 2021
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+x))) \\ Seiichi Manyama, Apr 08 2022
CROSSREFS
Variant: A237653.
Sequence in context: A032314 A144352 A107895 * A237653 A070960 A030834
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 20 2021
STATUS
approved