login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343580
a(n) = abs(A021009(n, floor(n/2))).
0
1, 1, 4, 18, 72, 600, 2400, 29400, 117600, 1905120, 7620480, 153679680, 614718720, 14841066240, 59364264960, 1669619952000, 6678479808000, 214453407168000, 857813628672000, 30967071995059200, 123868287980236800, 4965992272662220800, 19863969090648883200
OFFSET
0,3
COMMENTS
Absolute value of the middle coefficient of the Laguerre polynomials.
FORMULA
a(n) = ((-1)^floor(n/2)*n!/floor(n/2)!)*hypergeom([n + 1, -floor(n/2)], [1], 1).
a(n) = binomial(n, floor(n/2))*FallingFactorial(n, n - floor(n/2)).
MATHEMATICA
a[n_] := Abs[Hypergeometric2F1[-Floor[n/2], n+1, 1, 1] n!/Floor[n/2]!];
Table[a[n], {n, 0, 20}]
PROG
(SageMath)
def a(n): return binomial(n, n - n//2)*falling_factorial(n, n - n//2)
print([a(n) for n in range(23)])
(PARI) a(n) = abs(n!*polcoef(pollaguerre(n), n\2)); \\ Michel Marcus, Apr 21 2021
CROSSREFS
Sequence in context: A199524 A083693 A123476 * A027905 A037497 A202358
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 20 2021
STATUS
approved