login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295383
a(n) = (2*n)! * [x^(2*n)] (-x/(1 - x))^n/((1 - x)*n!).
6
1, -4, 72, -2400, 117600, -7620480, 614718720, -59364264960, 6678479808000, -857813628672000, 123868287980236800, -19863969090648883200, 3502679882984419737600, -673592285189311488000000, 140299650258002307072000000, -31464534897861317399347200000
OFFSET
0,2
FORMULA
E.g.f.: 2*K(-16*x)/Pi, where K() is the complete elliptic integral of the first kind.
a(n) ~ (-1)^n * 16^n * (n-1)! / Pi. - Vaclav Kotesovec, Nov 21 2017
From Peter Luschny, Nov 21 2017: (Start)
a(n) = (-16)^n*Gamma(n+1/2)^2/(Pi*Gamma(n+1)).
a(n) = (-16)^n*binomial(n-1/2,-1/2)*Gamma(n+1/2)/sqrt(Pi).
a(n) ~ (-exp(-1)*n*16)^n/sqrt(n*Pi/2). (End)
a(n) = (-1)^n*binomial(2*n,n)^2*n!. - Alois P. Heinz, Oct 02 2021
MAPLE
a := n -> (-16)^n*GAMMA(n+1/2)^2/(Pi*GAMMA(n+1)):
seq(a(n), n=0..15); # Peter Luschny, Nov 21 2017
MATHEMATICA
Table[(2 n)! SeriesCoefficient[(-x/(1 - x))^n /((1 - x) n!), {x, 0, 2 n}], {n, 0, 15}]
nmax = 15; CoefficientList[Series[2 EllipticK[-16 x]/Pi, {x, 0, nmax}], x] Range[0, nmax]!
Table[(-16)^n*Gamma[n + 1/2]^2/(Pi*Gamma[n + 1]), {n, 0, 50}] (* G. C. Greubel, Feb 06 2018 *)
PROG
(PARI) for(n=0, 30, print1(round((-16)^n*gamma(n+1/2)^2/(Pi*gamma(n+1))), ", ")) \\ G. C. Greubel, Feb 06 2018
(Magma) R:= RealField(); [Round((-16)^n*Gamma(n+1/2)^2/(Pi(R)*Gamma(n+1) )): n in [0..30]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
Central terms of triangles A021009 and A021010.
Cf. A144084.
Sequence in context: A186415 A211038 A203264 * A309980 A266865 A327882
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 21 2017
STATUS
approved