login
A309980
Number of binary relations on n unlabeled nodes that are neither reflexive nor antireflexive.
2
0, 4, 72, 2608, 272752, 93847104, 110518842048, 454710381676032, 6640565658505128832, 348708024629593894001152, 66538376166308068986316241408, 46534722991725338264882258863095808, 120139253095727581744381043433138973706240, 1151909524447243687554850690730124812494959992832
OFFSET
1,2
COMMENTS
Also the number of colored digraphs on n unlabeled nodes with nodes of exactly two colors. (Understand "(x,x) in the relation" for several nodes x as a special color!)
LINKS
FORMULA
a(n) = A000595(n) - 2 * A000273(n) for n >= 1.
EXAMPLE
n=2: We label node 1 with (1,1) in the relation and node 2 with (2,2) not in the relation, and we have two differently labeled nodes and so a(2) = A053763(2) = 4.
n=3: We have exactly either one or two nodes x with (x,x) in the relation. In A328773 this labelings correspond to the color schemes [2,1] and [1,2], both represented by the column index 2. So we have a(3) = 2 * A328773(3,2) = 72.
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v];
a[n_] := Module[{s = 0}, Do[t = 2^edges[p]; s += t*(1 - 2^(1 - Length[p]))* permcount[p], {p, IntegerPartitions[n]}]; s/n!];
Array[a, 14] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i])}
a(n) = {my(s=0); forpart(p=n, my(t=2^edges(p)); s+=t*(1 - 2^(1-#p))*permcount(p)); s/n!} \\ Andrew Howroyd, Nov 02 2019
CROSSREFS
Cf. A000595 (arbitrary binary relations), A000273 (digraphs, i.e. reflexive resp. antireflexive binary relations), A053763 (digraphs with distinguishing labeled nodes), A328773 (digraphs with given color scheme).
Sequence in context: A211038 A203264 A295383 * A266865 A327882 A003718
KEYWORD
nonn
AUTHOR
Peter Dolland, Nov 02 2019
STATUS
approved