The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309978 a(n) is the number of positive integers k such that there exists a nonnegative integer m with k + k^m = n. 3
 0, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Records occur at 1, 2, 4, 6, 30, ... Does there exist n such that a(n) >= 5? Do there exist examples besides 30 and 130 such that a(n) = 4? If so in either case, n > A253913(10000) = 87469256. LINKS Peter Kagey, Table of n, a(n) for n = 1..10000 FORMULA a(2n+1)  = 1 for all n >= 1. a(2n)   >= 2 for all n >= 2. EXAMPLE For n = 130 the a(130) = 4 positive integers with valid maps are   129 via 129 + 129^0 = 130,    65 via  65 +  65^1 = 130,     5 via   5 +   5^3 = 130, and     2 via   2 +   2^7 = 130. PROG (PARI) a(n) = {if (n==1, return (0)); my(d = divisors(n)); 1 + sumdiv(n, d, if ((d>1) && (d

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 11:30 EDT 2021. Contains 343995 sequences. (Running on oeis4.)