login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111376
Let qf(a,q) = Product(1-a*q^j,j=0..infinity); g.f. is qf(q^3,q^7)*qf(q^5,q^7)*qf(q^6,q^7)/(qf(q,q^7)*qf(q^2,q^7)*qf(q^4,q^7)).
2
1, 1, 2, 1, 3, 1, 2, -1, 3, 1, 3, 1, 4, 2, -1, -1, 1, 3, 1, 4, 6, 1, -1, -4, 5, -3, 6, 4, 9, -4, -5, 0, -3, 4, 4, 18, 1, -3, -4, -7, 0, -3, 25, 1, 5, -11, -4, -12, -7, 32, 11, 15, -15, 4, -24, -21, 27, 21, 31, -24, 17, -41, -31, 4, 38, 50, -18, 36, -46, -41, -36, 45, 67, -12, 57, -50, -38, -95, 51, 73, 14, 82, -32, -27, -171, 44
OFFSET
0,3
LINKS
FORMULA
Euler transform of period 7 sequence [1, 1, -1, 1, -1, -1, 0, ...]. - Michael Somos, Nov 11 2005
G.f.: Product_{k>0} (1-x^(7k-4))(1-x^(7k-2))(1-x^(7k-1))/((1-x^(7k-3))*(1-x^(7k-5))(1-x^(7k-6))). - Michael Somos, Nov 11 2005
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k)^-kronecker(-7, k), 1+x*O(x^n)), n))} /* Michael Somos, Nov 11 2005 */
CROSSREFS
Cf. A111375.
Sequence in context: A364447 A309978 A108103 * A241664 A157226 A156249
KEYWORD
sign,look
AUTHOR
N. J. A. Sloane, Nov 09 2005
STATUS
approved