login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let qf(a,q) = Product(1-a*q^j,j=0..infinity); g.f. is qf(q^3,q^7)*qf(q^5,q^7)*qf(q^6,q^7)/(qf(q,q^7)*qf(q^2,q^7)*qf(q^4,q^7)).
2

%I #11 May 21 2014 20:02:28

%S 1,1,2,1,3,1,2,-1,3,1,3,1,4,2,-1,-1,1,3,1,4,6,1,-1,-4,5,-3,6,4,9,-4,

%T -5,0,-3,4,4,18,1,-3,-4,-7,0,-3,25,1,5,-11,-4,-12,-7,32,11,15,-15,4,

%U -24,-21,27,21,31,-24,17,-41,-31,4,38,50,-18,36,-46,-41,-36,45,67,-12,57,-50,-38,-95,51,73,14,82,-32,-27,-171,44

%N Let qf(a,q) = Product(1-a*q^j,j=0..infinity); g.f. is qf(q^3,q^7)*qf(q^5,q^7)*qf(q^6,q^7)/(qf(q,q^7)*qf(q^2,q^7)*qf(q^4,q^7)).

%H Alois P. Heinz, <a href="/A111376/b111376.txt">Table of n, a(n) for n = 0..1000</a>

%F Euler transform of period 7 sequence [1, 1, -1, 1, -1, -1, 0, ...]. - _Michael Somos_, Nov 11 2005

%F G.f.: Product_{k>0} (1-x^(7k-4))(1-x^(7k-2))(1-x^(7k-1))/((1-x^(7k-3))*(1-x^(7k-5))(1-x^(7k-6))). - _Michael Somos_, Nov 11 2005

%o (PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1,n, (1-x^k)^-kronecker(-7,k), 1+x*O(x^n)), n))} /* _Michael Somos_, Nov 11 2005 */

%Y Cf. A111375.

%K sign,look

%O 0,3

%A _N. J. A. Sloane_, Nov 09 2005