OFFSET
0,12
COMMENTS
First diagonal is A000012, the all 1's sequence. Second nonzero diagonal is A000027 = n. Third nonzero diagonal is A027379 = n*(n+5)/2 for n>=1, or essentially A000217(n) - 3. Fourth nonzero diagonal is A111396. - Jonathan Vos Post, Nov 10 2005
Row sums are A126042. - Paul Barry, Dec 16 2006
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
I. Bajunaid et al., Function series, Catalan numbers and random walks on trees, Amer. Math. Monthly 112 (2005), 765-785.
Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 7, 10.
Emeric Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
FORMULA
Each term is the sum of the two terms above it to the left and two steps to the right.
From Paul Barry, Dec 16 2006: (Start)
Riordan array (g(x^3),x*g(x^3)) where g(x)=(2/sqrt(3x))*sin(asin(sqrt(27x/4))/3), the g.f. of A001764;
Number triangle T(n,k) = C(3*floor((n+2k)/3)-2k,floor((n+2k)/3)-k)*(k+1)/(2*floor((n+2k)/3)-k+ 1)(2*cos(2*pi*(n-k)/3)+1)/3. (End)
Inverse of Riordan array (1/(1+x^3), x/(1+x^3)), A126030. - Paul Barry, Dec 16 2006
G.f. (x*A(x))^k=sum{n>=k, T(n,k)*x^n}, where A(x)=1+x^3*A(x)^3. - Vladimir Kruchinin, Feb 18 2011
From G. C. Greubel, Jul 30 2022: (Start)
T(n, k) = (3/(n-k))*binomial(n, (n-k)/3 -1)*(k+1) for ( (n-k) mod 3 ) = 0, otherwise 0, with T(n, n) = 1.
T(n, n-3) = A000027(n-2), n >= 3.
T(n, n-6) = A027379(n-5), n >= 6.
T(n, n-9) = A111396(n-8), n >= 9.
T(n, n-12) = A167543(n+5), n >= 12.
Sum_{k=0..n} T(n, k) = A126042(n). (End)
EXAMPLE
Triangle begins:
1;
0, 1;
0, 0, 1;
1, 0, 0, 1;
0, 2, 0, 0, 1;
0, 0, 3, 0, 0, 1;
3, 0, 0, 4, 0, 0, 1;
0, 7, 0, 0, 5, 0, 0, 1;
0, 0, 12, 0, 0, 6, 0, 0, 1;
12, 0, 0, 18, 0, 0, 7, 0, 0, 1;
0, 30, 0, 0, 25, 0, 0, 8, 0, 0, 1;
0, 0, 55, 0, 0, 33, 0, 0, 9, 0, 0, 1;
55, 0, 0, 88, 0, 0, 42, 0, 0, 10, 0, 0, 1;
Production matrix is
0, 1;
0, 0, 1;
1, 0, 0, 1;
0, 1, 0, 0, 1;
0, 0, 1, 0, 0, 1;
0, 0, 0, 1, 0, 0, 1;
0, 0, 0, 0, 1, 0, 0, 1;
0, 0, 0, 0, 0, 1, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1, 0, 0, 1;
MATHEMATICA
T[n_, k_]= If[k==n, 1, If[Mod[n-k, 3]==0, (3/(n-k))*Binomial[n, (n-k)/3 -1]*(k + 1), 0]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 30 2022 *)
PROG
(Magma)
function A111373(n, k)
if k eq n then return 1;
elif ((n-k) mod 3) eq 0 then return (3/(n-k))*Binomial(n, Floor((n-k-3)/3))*(k+1);
else return 0;
end if; return A111373;
end function;
[A111373(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 30 2022
(SageMath)
def A111373(n, k):
if(k==n): return 1
elif ((n-k)%3==0): return (3/(n-k))*binomial(n, (n-k)/3 -1)*(k+1)
else: return 0
flatten([[A111373(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 30 2022
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Nov 09 2005
EXTENSIONS
More terms from Kerri Sullivan (ksulliva(AT)ashland.edu), Jan 23 2006
STATUS
approved