login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126042
Expansion of f(x^3)/(1-x*f(x^3)), where f(x) is the g.f. of A001764, whose n-th term is binomial(3n,n)/(2n+1).
5
1, 1, 1, 2, 3, 4, 8, 13, 19, 38, 64, 98, 196, 337, 531, 1062, 1851, 2974, 5948, 10468, 17060, 34120, 60488, 99658, 199316, 355369, 590563, 1181126, 2115577, 3540464, 7080928, 12731141, 21430267, 42860534, 77306428, 130771376, 261542752, 473018396, 803538100
OFFSET
0,4
COMMENTS
Row sums of number triangle A111373.
Interleaves T(3n,2n), T(3n+1,2n+1) and T(3n+2,2n+2) for T(n,k) = A047089(n,k).
One step forward and two steps back: number of nonnegative walks of n steps where the steps are size 1 forwards and size 2 backwards. - David Scambler, Mar 15 2011
Brown's criterion ensures that the sequence is complete (see formulae). - Vladimir M. Zarubin, Aug 05 2019
Number of ordered trees with n+1 edges, having nonroot nodes of outdegree 0 or 3. - Emanuele Munarini, Jun 20 2024
LINKS
Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 7, 10.
Eric Weisstein's World of Mathematics, Brown's Criterion.
FORMULA
a(n) = Sum_{k=0..n} binomial(3*floor((n+2k)/3) - 2k, floor((n+2k)/3)-k)*(k+1)/(2*floor((n+2k)/3) - k + 1)(2*cos(2*Pi*(n-k)/3) + 1)/3.
G.f.: (1/x)*Series_Reversion( x*(1+x)^2/((1+x)^3+x^3) ). - Paul D. Hanna, Mar 15 2011
From Vladimir M. Zarubin, Aug 05 2019: (Start)
a(0) = 1, a(1) = 1, a(2) = 1 and for k>0
a(3*k) = 2*a(3*k-1),
a(3*k+1) = 2*a(3*k) - binomial(3*k,k)/(2*k+1),
a(3*k+2) = 2*a(3*k+1) - binomial(3*k+1,k)/(k+1),
where binomial(3*k,k)/(2*k+1) = A001764(k)
and binomial(3*k+1,k)/(k+1) = A006013(k). (End)
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (n-3*k+1) * binomial(n+1,k). - Seiichi Manyama, Jan 27 2024
MAPLE
a:= proc(n) option remember; `if`(n<4, [1$3, 2][n+1], (a(n-1)*
2*(20*n^4-14*n^3-31*n^2-n+8)-6*(3*n-1)*(5*n-6)*a(n-2)
+9*(n-2)*(15*n^3-48*n^2+15*n+14)*a(n-3)-54*(n-2)*(n-3)*
(5*n^2-n-2)*a(n-4))/(2*(2*n+1)*(n+1)*(5*n^2-11*n+4)))
end:
seq(a(n), n=0..45); # Alois P. Heinz, Sep 07 2022
MATHEMATICA
Table[Binomial[n, Floor[n/3]] -Sum[Binomial[n, i], {i, 0, Floor[n/3] -1}], {n, 0, 40}] (* David Callan, Oct 26 2017 *)
a[n_] := Binomial[n, Floor[n/3]] (1 + Hypergeometric2F1[1, -n + Floor[n/3], 1 + Floor[n/3], -1]) - 2^n; Table[a[n], {n, 0, 38}] (* Peter Luschny, Jun 20 2024 *)
PROG
(PARI) {a(n)=polcoeff((1/x)*serreverse(x*(1+x)^2/((1+x)^3+x^3+x*O(x^n))), n)}
(PARI)
n=30;
{a0=1; a1=1; a2=1; for(k=1, n/3, print1(a0, ", ", a1, ", ", a2, ", ");
a0=2*a2; a1=2*a0-binomial(3*k, k)/(2*k+1); a2=2*a1-binomial(3*k+1, k)/(k+1))
} \\ Vladimir M. Zarubin, Aug 05 2019
(Magma) [n lt 3 select 1 else Binomial(n, Floor(n/3)) - (&+[Binomial(n, j): j in [0..Floor(n/3)-1]]): n in [0..40]]; // G. C. Greubel, Jul 30 2022
(SageMath) [binomial(n, (n//3)) - sum(binomial(n, j) for j in (0..(n//3)-1)) for n in (0..40)] # G. C. Greubel, Jul 30 2022
CROSSREFS
Sequence in context: A034776 A068791 A219968 * A076227 A186272 A376754
KEYWORD
easy,nonn,changed
AUTHOR
Paul Barry, Dec 16 2006
STATUS
approved