The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126042 Expansion of f(x^3)/(1-x*f(x^3)), where f(x) is the g.f. of A001764, whose n-th term is binomial(3n,n)/(2n+1). 3
 1, 1, 1, 2, 3, 4, 8, 13, 19, 38, 64, 98, 196, 337, 531, 1062, 1851, 2974, 5948, 10468, 17060, 34120, 60488, 99658, 199316, 355369, 590563, 1181126, 2115577, 3540464, 7080928, 12731141, 21430267, 42860534, 77306428, 130771376, 261542752, 473018396, 803538100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Row sums of number triangle A111373. Interleaves T(3n,2n), T(3n+1,2n+1) and T(3n+2,2n+2) for T(n,k) = A047089(n,k). One step forward and two steps back: number of nonnegative walks of n steps where the steps are size 1 forwards and size 2 backwards. - David Scambler, Mar 15 2011 Brown's criterion ensures that the sequence is complete (see formulae). - Vladimir M. Zarubin, Aug 05 2019 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Brown's Criterion FORMULA a(n) = Sum_{k=0..n} binomial(3*floor((n+2k)/3) - 2k, floor((n+2k)/3)-k)*(k+1)/(2*floor((n+2k)/3) - k + 1)(2*cos(2*Pi*(n-k)/3) + 1)/3. G.f.: (1/x)*Series_Reversion( x*(1+x)^2/((1+x)^3+x^3) ). - Paul D. Hanna, Mar 15 2011 From Vladimir M. Zarubin, Aug 05 2019: (Start) a(0) = 1, a(1) = 1, a(2) = 1 and for k>0 a(3*k) = 2*a(3*k-1), a(3*k+1) = 2*a(3*k) - binomial(3*k,k)/(2*k+1), a(3*k+2) = 2*a(3*k+1) - binomial(3*k+1,k)/(k+1), where binomial(3*k,k)/(2*k+1) = A001764(k) and binomial(3*k+1,k)/(k+1) = A006013(k). (End) MAPLE a:= proc(n) option remember; `if`(n<4, [1\$3, 2][n+1], (a(n-1)* 2*(20*n^4-14*n^3-31*n^2-n+8)-6*(3*n-1)*(5*n-6)*a(n-2) +9*(n-2)*(15*n^3-48*n^2+15*n+14)*a(n-3)-54*(n-2)*(n-3)* (5*n^2-n-2)*a(n-4))/(2*(2*n+1)*(n+1)*(5*n^2-11*n+4))) end: seq(a(n), n=0..45); # Alois P. Heinz, Sep 07 2022 MATHEMATICA Table[Binomial[n, Floor[n/3]] -Sum[Binomial[n, i], {i, 0, Floor[n/3] -1}], {n, 0, 40}] (* David Callan, Oct 26 2017 *) PROG (PARI) {a(n)=polcoeff((1/x)*serreverse(x*(1+x)^2/((1+x)^3+x^3+x*O(x^n))), n)} (PARI) n=30; {a0=1; a1=1; a2=1; for(k=1, n/3, print1(a0, ", ", a1, ", ", a2, ", "); a0=2*a2; a1=2*a0-binomial(3*k, k)/(2*k+1); a2=2*a1-binomial(3*k+1, k)/(k+1)) } // Vladimir M. Zarubin, Aug 05 2019 (Magma) [n lt 3 select 1 else Binomial(n, Floor(n/3)) - (&+[Binomial(n, j): j in [0..Floor(n/3)-1]]): n in [0..40]]; // G. C. Greubel, Jul 30 2022 (SageMath) [binomial(n, (n//3)) - sum(binomial(n, j) for j in (0..(n//3)-1)) for n in (0..40)] # G. C. Greubel, Jul 30 2022 CROSSREFS Cf. A047089, A111373. Sequence in context: A034776 A068791 A219968 * A076227 A186272 A092075 Adjacent sequences: A126039 A126040 A126041 * A126043 A126044 A126045 KEYWORD easy,nonn AUTHOR Paul Barry, Dec 16 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 20:59 EST 2022. Contains 358510 sequences. (Running on oeis4.)