login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111396 a(n) = n(n+7)(n+8)/6. 4
0, 12, 30, 55, 88, 130, 182, 245, 320, 408, 510, 627, 760, 910, 1078, 1265, 1472, 1700, 1950, 2223, 2520, 2842, 3190, 3565, 3968, 4400, 4862, 5355, 5880, 6438, 7030, 7657, 8320, 9020, 9758, 10535, 11352, 12210, 13110, 14053, 15040, 16072, 17150, 18275, 19448 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = binomial(n+8,3)-2*binomial(n+8,2). - Zerinvary Lajos, Nov 25 2006, corrected by R. J. Mathar, Mar 15 2011

G.f.: x*(12-18*x+7*x^2) /(x-1)^4 . - R. J. Mathar, Mar 15 2011

a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jun 27 2012

MAPLE

[seq(binomial(n, 3)-2*binomial(n, 2), n=8..52)]; # Zerinvary Lajos, Nov 25 2006

MATHEMATICA

Table[n (n + 7) (n + 8)/6, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)

CoefficientList[Series[x*(12-18*x+7*x^2)/(x-1)^4, {x, 0, 50}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 12, 30, 55}, 40] (* Vincenzo Librandi, Jun 27 2012 *)

PROG

(MAGMA) I:=[0, 12, 30, 55]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 27 2012

(PARI) a(n)=n*(n+7)*(n+8)/6 \\ Charles R Greathouse IV, Oct 16 2015

CROSSREFS

Sequence in context: A173107 A277978 A131874 * A080385 A120090 A280344

Adjacent sequences:  A111393 A111394 A111395 * A111397 A111398 A111399

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 9 10:25 EDT 2020. Contains 333348 sequences. (Running on oeis4.)