login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131874
a(n) = (7*n^2 + 15*n + 2) / 2.
2
1, 12, 30, 55, 87, 126, 172, 225, 285, 352, 426, 507, 595, 690, 792, 901, 1017, 1140, 1270, 1407, 1551, 1702, 1860, 2025, 2197, 2376, 2562, 2755, 2955, 3162, 3376, 3597, 3825, 4060, 4302, 4551, 4807, 5070, 5340, 5617, 5901, 6192, 6490, 6795, 7107, 7426
OFFSET
0,2
COMMENTS
Row sums of triangle A131873.
FORMULA
Binomial transform of (1, 11, 7, 0, 0, 0, ...).
a(n) = a(n-1) + 7*n + 4, (with a(0)=1). - Vincenzo Librandi, Nov 23 2010
a(n) = (2 + 15*n + 7*n^2)/2;
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3);
G.f.: (1 + 9*x - 3*x^2)/ (1-x)^3. - Colin Barker, Sep 13 2012
EXAMPLE
a(2) = 30 = sum of row 2 terms of triangle A131873: (15 + 8 + 7).
a(2) = 30 = (1, 2, 1) dot (1, 11, 7) = (1 + 22 + 7).
MAPLE
A131874:=n->(2+15*n+7*n^2)/2; seq(A131874(n), n=0..100); # Wesley Ivan Hurt, Mar 26 2014
PROG
(PARI) a(n)=(7*n^2+15*n+2)/2 \\ Charles R Greathouse IV, Jun 16 2017
CROSSREFS
Cf. A131873.
Sequence in context: A019557 A173107 A277978 * A111396 A080385 A120090
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 22 2007
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Dec 04 2008
STATUS
approved