login
A186415
a(n) = binomial(2n,n)^3/(n+1).
7
1, 4, 72, 2000, 68600, 2667168, 112698432, 5053029696, 236860767000, 11493303192800, 573327757086656, 29253930349198464, 1521079361361956032, 80361335659444000000, 4304087536829486400000, 233271979857187430688000, 12774642558686527109607000, 706008965215713532853436000, 39337406606398593529683000000
OFFSET
0,2
LINKS
FORMULA
G.f.: 3F2(1/2,1/2,1/2;1,2;64x), where 3F2(.,.,.;.,.;.) is a generalized hypergeometric series.
a(n) = A000888(n)*A000984(n). - R. J. Mathar, Feb 23 2011
a(n) ~ 64^n/(Pi^(3/2)*n^(5/2)). - Ilya Gutkovskiy, Nov 01 2016
MAPLE
A186415 := proc(n) binomial(2*n, n)^3/(n+1) ; end proc: # R. J. Mathar, Feb 23 2011
MATHEMATICA
Table[Binomial[2n, n]^3/(n+1), {n, 0, 40}]
PROG
(Maxima) makelist(binomial(2*n, n)^3/(n+1), n, 0, 40);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Feb 21 2011
STATUS
approved