login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377356
a(n) = Product{i = 1..(n-1)} prime(i)^e_i, where prime(i)^e_i is the smallest power of prime(i) which exceeds prime(n).
1
1, 4, 72, 1800, 529200, 64033200, 21643221600, 6254891042400, 2258015666306400, 17917354312141284000, 15068494976510819844000, 28961647344853795740168000, 39648495215104846368289992000, 66649120456591246745095476552000, 123234223724237215231681536144648000, 1905570801447880059127491593404692024000
OFFSET
1,2
COMMENTS
a(n) is the product of powers of primes p, for all p < prime(n), where each prime power is the smallest which exceeds prime(n), (compare with A099795). Every term may be expressed as a product of primorial powers, (A002110(n-1)^2 being the greatest primorial power divisor of a(n)).
From Michael De Vlieger, Oct 26 2024: (Start)
This sequence adds 1 to all exponents of prime power factors of A099795(n) for n > 1.
Proper subset of A001694, all terms are powerful. (End)
LINKS
FORMULA
a(n) = A002110(n-1)*A099795(n); A007947(a(n)) = rad(a(n)) = A002110(n-1).
EXAMPLE
For n = 5, a(5) = 529200, since prime(5) = 11, thus we have 2^4*3^3*5^2*7^2 = 16*27*25*49 = 529200. We may express this instead as 210*2520 = A002110(4)*A099795(5) = 210^2*6^1*2^1 = 529200.
From Michael De Vlieger, Oct 26 2024: (Start)
Table of first 12 terms showing exponents of prime power factors of a(n), where "." represents 0.
Exponents of primes
1 1 1 1 2 2 3
n a(n) 2 3 5 7 1 3 7 9 3 9 1
-------------------------------------------------------
1 1 . . . . . . . . . . .
2 4 2 . . . . . . . . . .
3 72 3 2 . . . . . . . . .
4 1800 3 2 2 . . . . . . . .
5 529200 4 3 2 2 . . . . . . .
6 64033200 4 3 2 2 2 . . . . . .
7 21643221600 5 3 2 2 2 2 . . . . .
8 6254891042400 5 3 2 2 2 2 2 . . . .
9 2258015666306400 5 3 2 2 2 2 2 2 . . .
10 17917354312141284000 5 4 3 2 2 2 2 2 2 . .
11 15068494976510819844000 5 4 3 2 2 2 2 2 2 2 .
12 28961647344853795740168000 6 4 3 2 2 2 2 2 2 2 2 (End)
MATHEMATICA
Array[Product[Prime[i]^(1 + Floor[Log[Prime[i], Prime[#]]]), {i, # - 1}] &, 12] (* Michael De Vlieger, Oct 26 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michael De Vlieger, Oct 26 2024
STATUS
approved