login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377358
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x))/A(x) )^2.
1
1, 2, 4, 22, 194, 2268, 34272, 624804, 13432120, 332078160, 9286572624, 289821031344, 9985648515504, 376489542984384, 15418392593403360, 681562973789926560, 32345053760113660800, 1640243700728870131200, 88516191520113318169344, 5064936155664187593030912
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377349.
a(n) = 2 * Sum_{k=0..floor((2*n+2)/3)} (2*n-2*k+1)!/(2*n-3*k+2)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = 2*sum(k=0, (2*n+2)\3, (2*n-2*k+1)!/(2*n-3*k+2)!*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A377349.
Sequence in context: A019025 A264729 A339781 * A192332 A324603 A322520
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 26 2024
STATUS
approved